Home

The Variation of Animals and Plants under Domestication Volume II Part 22

The Variation of Animals and Plants under Domestication - novelonlinefull.com

You’re read light novel The Variation of Animals and Plants under Domestication Volume II Part 22 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

REGROWTH OF AMPUTATED PARTS.

GRAFT-HYBRIDS.

THE DIRECT ACTION OF THE MALE ELEMENT ON THE FEMALE.

DEVELOPMENT.

THE FUNCTIONAL INDEPENDENCE OF THE UNITS OF THE BODY.

VARIABILITY.

INHERITANCE.

REVERSION.

SECOND PART: STATEMENT OF THE HYPOTHESIS.

HOW FAR THE NECESSARY a.s.sUMPTIONS ARE IMPROBABLE.

EXPLANATION BY AID OF THE HYPOTHESIS OF THE SEVERAL CLa.s.sES OF FACTS SPECIFIED IN THE FIRST PART.

CONCLUSION.

In the previous chapters large cla.s.ses of facts, such as those bearing on bud- variation, the various forms of inheritance, the causes and laws of variation, have been discussed; and it is obvious that these subjects, as well as the several modes of reproduction, stand in some sort of relation to one another.

I have been led, or rather forced, to form a view which to a certain extent connects these facts by a tangible method. Every one would wish to explain to himself, even in an imperfect manner, how it is possible for a character possessed by some remote ancestor suddenly to reappear in the offspring; how the effects of increased or decreased use of a limb can be transmitted to the child; how the male s.e.xual element can act not solely on the ovules, but occasionally on the mother-form; how a hybrid can be produced by the union of the cellular tissue of two plants independently of the organs of generation; how a limb can be reproduced on the exact line of amputation, with neither too much nor too little added; how the same organism may be produced by such widely different processes, as budding and true seminal generation; and, lastly, how of two allied forms, one pa.s.ses in the course of its development through the most complex metamorphoses, and the other does not do so, though when mature both are alike in every detail of structure. I am aware that my view is merely a provisional hypothesis or speculation; but until a better one be advanced, it will serve to bring together a mult.i.tude of facts which are at present left disconnected by any efficient cause. As Whewell, the historian of the inductive sciences, remarks:--"Hypotheses may often be of service to science, when they involve a certain portion of incompleteness, and even of error." Under this point of view I venture to advance the hypothesis of Pangenesis, which implies that every separate part of the whole organisation reproduces itself. So that ovules, spermatozoa, and pollen-grains,--the fertilised egg or seed, as well as buds,--include and consist of a mult.i.tude of germs thrown off from each separate part or unit. (27/1. This hypothesis has been severely criticised by many writers, and it will be fair to give references to the more important articles. The best essay which I have seen is by Prof. Delpino, ent.i.tled 'Sulla Darwiniana Teoria della Pangenesi, 1869' of which a translation appeared in 'Scientific Opinion' September 29, 1869 and the succeeding numbers. He rejects the hypothesis, but criticises it fairly, and I have found his criticisms very useful. Mr. Mivart ('Genesis of Species'

1871 chapter 10.) follows Delpino, but adds no new objections of any weight.

Dr. Bastian ('The Beginnings of Life' 1872 volume 2 page 98) says that the hypothesis "looks like a relic of the old rather than a fitting appanage of the new evolution philosophy." He shows that I ought not to have used the term "pangenesis," as it had been previously used by Dr. Gros in another sense. Dr.

Lionel Beale ('Nature' May 11, 1871 page 26) sneers at the whole doctrine with much acerbity and some justice. Prof. Wigand ('Schriften der Gesell. der gesammt. Naturwissen. zu Marburg' b. 9 1870) considers the hypothesis as unscientific and worthless. Mr. G.H. Lewes ('Fortnightly Review' November 1, 1868 page 503) seems to consider that it may be useful: he makes many good criticisms in a perfectly fair spirit. Mr. F. Galton, after describing his valuable experiments ('Proc. Royal Soc.' volume 19 page 393) on the intertransfusion of the blood of distinct varieties of the rabbit, concludes by saying that in his opinion the results negative beyond all doubt the doctrine of Pangenesis. He informs me that subsequently to the publication of his paper he continued his experiments on a still larger scale for two more generations, without any sign of mongrelism showing itself in the very numerous offspring. I certainly should have expected that gemmules would have been present in the blood, but this is no necessary part of the hypothesis, which manifestly applies to plants and the lowest animals. Mr. Galton, in a letter to 'Nature' (April 27, 1871 page 502), also criticises various incorrect expressions used by me. On the other hand, several writers have spoken favourably of the hypothesis, but there would be no use in giving references to their articles. I may, however, refer to Dr. Ross' work, 'The Graft Theory of Disease; being an application of Mr. Darwin's hypothesis of Pangenesis' 1872 as he gives several original and ingenious discussions.)

In the First Part I will enumerate as briefly as I can the groups of facts which seem to demand connection; but certain subjects, not hitherto discussed, must be treated at disproportionate length. In the Second Part the hypothesis will be given; and after considering how far the necessary a.s.sumptions are in themselves improbable, we shall see whether it serves to bring under a single point of view the various facts.

PART I.

Reproduction may be divided into two main cla.s.ses, namely, s.e.xual and as.e.xual.

The latter is effected in many ways--by the formation of buds of various kinds, and by fissiparous generation, that is by spontaneous or artificial division. It is notorious that some of the lower animals, when cut into many pieces, reproduce so many perfect individuals: Lyonnet cut a Nais or freshwater worm into nearly forty pieces, and these all reproduced perfect animals. (27/2. Quoted by Paget 'Lectures on Pathology' 1853 page 159.) It is probable that segmentation could be carried much further in some of the protozoa; and with some of the lowest plants each cell will reproduce the parent-form. Johannes Muller thought that there was an important distinction between gemmation and fission; for in the latter case the divided portion, however small, is more fully developed than a bud, which also is a younger formation; but most physiologists are now convinced that the two processes are essentially alike. (27/3. Dr. Lachmann also observes ('Annals and Mag. of Nat.

History' 2nd series volume 19 1857 page 231) with respect to infusoria, that "fissation and gemmation pa.s.s into each other almost imperceptibly." Again, Mr. W.C. Minor ('Annals and Mag. of Nat. Hist.' 3rd series volume 11 page 328) shows that with Annelids the distinction that has been made between fission and budding is not a fundamental one. See also Professor Clark's work 'Mind in Nature' New York 1865 pages 62, 94.) Prof. Huxley remarks, "fission is little more than a peculiar mode of budding," and Prof. H.J. Clark shows in detail that there is sometimes "a compromise between self-division and budding." When a limb is amputated, or when the whole body is bisected, the cut extremities are said to bud forth (27/4. See Bonnet 'Oeuvres d'Hist. Nat.' tome 5 1781 page 339 for remarks on the budding-out of the amputated limbs of Salamanders.); and as the papilla, which is first formed, consists of undeveloped cellular tissue like that forming an ordinary bud, the expression is apparently correct. We see the connection of the two processes in another way; for Trembley observed with the hydra, that the reproduction of the head after amputation was checked as soon as the animal put forth reproductive gemmae. (27/5. Paget 'Lectures on Pathology' 1853 page 158.)

Between the production, by fissiparous generation, of two or more complete individuals, and the repair of even a very slight injury, there is so perfect a gradation, that it is impossible to doubt that the two processes are connected. As at each stage of growth an amputated part is replaced by one in the same state of development, we must also follow Sir J. Paget in admitting, "that the powers of development from the embryo, are identical with those exercised for the restoration from injuries: in other words, that the powers are the same by which perfection is first achieved, and by which, when lost, it is recovered." (27/6. Ibid pages 152, 164.) Finally, we may conclude that the several forms of budding, fissiparous generation, the repair of injuries, and development, are all essentially the results of one and the same power.

s.e.xUAL GENERATION.

The union of the two s.e.xual elements seems at first sight to make a broad distinction between s.e.xual and as.e.xual generation. But the conjugation of algae, by which process the contents of two cells unite into a single ma.s.s capable of development, apparently gives us the first step towards s.e.xual union: and Pringsheim, in his memoir on the pairing of Zoospores (27/7.

Translated in 'Annals and Mag. of Nat. Hist.' April 1870 page 272.), shows that conjugation graduates into true s.e.xual reproduction. Moreover, the now well-ascertained cases of Parthenogenesis prove that the distinction between s.e.xual and as.e.xual generation is not nearly so great as was formerly thought; for ova occasionally, and even in some cases frequently, become developed into perfect beings, without the concourse of the male. With most of the lower animals and even with mammals, the ova show a trace of parthenogenetic power, for without being fertilised they pa.s.s through the first stages of segmentation. (27/8. Bischoff as quoted by von Siebold "Ueber Parthenogenesis"

'Sitzung der math. phys. Cla.s.se.' Munich November 4, 1871 page 240. See also Quatref.a.ges 'Annales des Sc. Nat. Zoolog.' 3rd series 1850 page 138.) Nor can pseudova which do not need fertilisation, be distinguished from true ova, as was first shown by Sir J. Lubbock, and is now admitted by Siebold. So, again, the germ-b.a.l.l.s in the larvae of Cecidomyia are said by Leuckart (27/9. 'On the As.e.xual Reproduction of Cecidomyide Larvae' translated in 'Annals and Mag. of Nat. Hist.' March 1866 pages 167, 171.) to be formed within the ovarium, but they do not require to be fertilised. It should also be observed that in s.e.xual generation, the ovules and the male element have equal power of transmitting every single character possessed by either parent to their offspring. We see this clearly when hybrids are paired inter se, for the characters of both grandparents often appear in the progeny, either perfectly or by segments. It is an error to suppose that the male transmits certain characters and the female other characters; although no doubt, from unknown causes, one s.e.x sometimes has a much stronger power of transmission than the other.

It has, however, been maintained by some authors that a bud differs essentially from a fertilised germ, in always reproducing the perfect character of the parent-stock; whilst fertilised germs give birth to variable beings. But there is no such broad distinction as this. In the eleventh chapter numerous cases were advanced showing that buds occasionally grow into plants having quite new characters; and the varieties thus produced can be propagated for a length of time by buds, and occasionally by seed.

Nevertheless, it must be admitted that beings produced s.e.xually are much more liable to vary than those produced as.e.xually; and of this fact a partial explanation will hereafter be attempted. The variability in both cases is determined by the same general causes, and is governed by the same laws. Hence new varieties arising from buds cannot be distinguished from those arising from seed. Although bud-varieties usually retain their character during successive bud-generations, yet they occasionally revert, even after a long series of bud-generations, to their former character. This tendency to reversion in buds, is one of the most remarkable of the several points of agreement between the offspring from bud and seminal reproduction.

But there is one difference between organisms produced s.e.xually and as.e.xually, which is very general. The former pa.s.s in the course of their development from a very low stage to their highest stage, as we see in the metamorphoses of insects and of many other animals, and in the concealed metamorphoses of the vertebrata. Animals propagated as.e.xually by buds or fission, on the other hand, commence their development at that stage at which the budding or self- dividing animal may happen to be, and therefore do not pa.s.s through some of the lower developmental stages. (27/10. Prof. Allman speaks ('Transact. R.

Soc. of Edinburgh' volume 26 1870 page 102) decisively on this head with respect to the Hydroida: he says, "It is a universal law in the succession of zooids, that no retrogression ever takes place in the series.") Afterwards, they often advance in organisation, as we see in the many cases of "alternate generation." In thus speaking of alternate generation, I follow those naturalists who look at this process as essentially one of internal budding or of fissiparous generation. Some of the lower plants, however, such as mosses and certain algae, according to Dr. L. Radlkofer (27/11. 'Annals and Mag. of Nat. Hist.' 2nd series volume 20 1857 pages 153-455), when propagated as.e.xually, do undergo a retrogressive metamorphosis. As far as the final cause is concerned, we can to a certain extent understand why beings propagated by buds should not pa.s.s through all the early stages of development; for with each organism the structure acquired at each stage must be adapted to its peculiar habits; and if there are places for the support of many individuals at some one stage, the simplest plan will be that they should be multiplied at this stage, and not that they should first retrograde in their development to an earlier or simpler structure, which might not be fitted for the then surrounding conditions.

From the several foregoing considerations we may conclude that the difference between s.e.xual and as.e.xual generation is not nearly so great as at first appears; the chief difference being that an ovule cannot continue to live and to be fully developed unless it unites with the male element; but even this difference is far from invariable, as shown by the many cases of parthenogenesis. We are therefore naturally led to inquire what the final cause can be of the necessity in ordinary generation for the concourse of the two s.e.xual elements.

Seeds and ova are often highly serviceable as the means of disseminating plants and animals, and of preserving them during one or more seasons in a dormant state; but unimpregnated seeds or ova, and detached buds, would be equally serviceable for both purposes. We can, however, indicate two important advantages gained by the concourse of the two s.e.xes, or rather of two individuals belonging to opposite s.e.xes; for, as I have shown in a former chapter, the structure of every organism appears to be especially adapted for the concurrence, at least occasionally, of two individuals. When species are rendered highly variable by changed conditions of life, the free intercrossing of the varying individuals tends to keep each form fitted for its proper place in nature; and crossing can be effected only by s.e.xual generation; but whether the end thus gained is of sufficient importance to account for the first origin of s.e.xual intercourse is extremely doubtful. Secondly, I have shown from a large body of facts, that, as a slight change in the conditions of life is beneficial to each creature, so, in an a.n.a.logous manner, is the change effected in the germ by s.e.xual union with a distinct individual; and I have been led, from observing the many widely-extended provisions throughout nature for this purpose, and from the greater vigour of crossed organisms of all kinds, as proved by direct experiments, as well as from the evil effects of close interbreeding when long continued, to believe that the advantage thus gained is very great.

Why the germ, which before impregnation undergoes a certain amount of development, ceases to progress and perishes, unless it be acted on by the male element; and why conversely the male element, which in the case of some insects is enabled to keep alive for four or five years, and in the case of some plants for several years, likewise perishes, unless it acts on or unites with the germ, are questions which cannot be answered with certainty. It is, however, probable that both s.e.xual elements perish, unless brought into union, simply from including too little formative matter for independent development.

Quatref.a.ges has shown in the case of the Teredo (27/12. 'Annales des Sc. Nat.'

3rd series 1850 tome 13.), as did formerly Prevost and Dumas with other animals, that more than one spermatozoon is requisite to fertilise an ovum.

This has likewise been shown by Newport (27/13. 'Transact. Phil. Soc.' 1851 pages 196, 208, 210; 1853 pages 245, 247.), who proved by numerous experiments, that, when a very small number of spermatozoa are applied to the ova of Batrachians, they are only partially impregnated, and an embryo is never fully developed. The rate also of the segmentation of the ovum is determined by the number of the spermatozoa. With respect to plants, nearly the same results were obtained by Kolreuter and Gartner. This last careful observer, after making successive trials on a Malva with more and more pollen- grains, found (27/14. 'Beitrage zur Kenntniss' etc. 1844 s. 345.), that even thirty grains did not fertilise a single seed; but when forty grains were applied to the stigma, a few seeds of small size were formed. In the case of Mirabilis the pollen grains are extraordinarily large, and the ovarium contains only a single ovule; and these circ.u.mstances led Naudin (27/15.

'Nouvelles Archives du Museum' tome 1 page 27.) to make the following experiments: a flower was fertilised by three grains and succeeded perfectly; twelve flowers were fertilised by two grains, and seventeen flowers by a single grain, and of these one flower alone in each lot perfected its seed: and it deserves especial notice that the plants produced by these two seeds never attained their proper dimensions, and bore flowers of remarkably small size. From these facts we clearly see that the quant.i.ty of the peculiar formative matter which is contained within the spermatozoa and pollen-grains is an all-important element in the act of fertilisation, not only for the full development of the seed, but for the vigour of the plant produced from such seed. We see something of the same kind in certain cases of parthenogenesis, that is, when the male element is wholly excluded; for M. Jourdan (27/16. As quoted by Sir J. Lubbock in 'Nat. Hist. Review' 1862 page 345. Weijenbergh also raised ('Nature' December 21, 1871 page 149) two successive generations from unimpregnated females of another lepidopterous insect, Liparis dispar.

These females did not produce at most one-twentieth of their full complement of eggs, and many of the eggs were worthless. Moreover the caterpillars raised from these unfertilised eggs "possessed far less vitality" than those from fertilised eggs. In the third parthenogenetic generation not a single egg yielded a caterpillar.) found that, out of about 58,000 eggs laid by unimpregnated silk-moths, many pa.s.sed through their early embryonic stages, showing that they were capable of self-development, but only twenty-nine out of the whole number produced caterpillars. The same principle of quant.i.ty seems to hold good even in artificial fissiparous reproduction, for Hackel (27/17. 'Entwickelungsgeschichte der Siphonophora' 1869 page 73.) found that by cutting the segmented and fertilised ova or larva of Siphonophorae (jelly- fishes) into pieces, the smaller the pieces were, the slower was the rate of development, and the larvae thus produced were by so much the more imperfect and inclined to monstrosity. It seems, therefore, probable that with the separate s.e.xual elements deficient quant.i.ty of formative matter is the main cause of their not having the capacity for prolonged existence and development, unless they combine and thus increase each other's bulk. The belief that it is the function of the spermatozoa to communicate life to the ovule seems a strange one, seeing that the unimpregnated ovule is already alive and generally undergoes a certain amount of independent development.

s.e.xual and as.e.xual reproduction are thus seen not to differ essentially; and we have already shown that as.e.xual reproduction, the power of regrowth and development are all parts of one and the same great law.

REGROWTH OF AMPUTATED PARTS.

This subject deserves a little further discussion. A mult.i.tude of the lower animals and some vertebrates possess this wonderful power. For instance, Spallanzani cut off the legs and tail of the same salamander six times successively, and Bonnet (27/18. Spallanzani 'An Essay on Animal Reproduction'

translated by Dr. Maty 1769 page 79. Bonnet 'Oeuvres d'Hist. Nat.' tome 5 part 1 4to. edition 1781 pages 343, 350.) did so eight times; and on each occasion the limbs were reproduced on the exact line of amputation, with no part deficient or in excess. An allied animal, the axolotl, had a limb bitten off, which was reproduced in an abnormal condition, but when this was amputated it was replaced by a perfect limb. (27/19. Vulpian as quoted by Prof. Faivre 'La Variabilite des Especes' 1868 page 112.) The new limbs in these cases bud forth, and are developed in the same manner as during the regular development of a young animal. For instance, with the Amblystoma lurida, three toes are first developed, then the fourth, and on the hind-feet the fifth, and so it is with a reproduced limb. (27/20. Dr. P. Hoy 'The American Naturalist' September 1871 page 579.)

The power of regrowth is generally much greater during the youth of an animal or during the earlier stages of its development than during maturity. The larvae or tadpoles of the Batrachians are capable of reproducing lost members, but not so the adults. (27/21. Dr. Gunther in Owen 'Anatomy of Vertebrates'

volume 1 1866 page 567. Spallanzani has made similar observations.) Mature insects have no power of regrowth, excepting in one order, whilst the larvae of many kinds have this power. Animals low in the scale are able, as a general rule, to reproduce lost parts far more easily than those which are more highly organised. The myriapods offer a good ill.u.s.tration of this rule; but there are some strange exceptions to it--thus Nemerteans, though lowly organised, are said to exhibit little power of regrowth. With the higher vertebrata, such as birds and mammals, the power is extremely limited. (27/22. A thrush was exhibited before the British a.s.sociation at Hull in 1853 which had lost its tarsus, and this member, it was a.s.serted, had been thrice reproduced; having been lost, I presume, each time by disease. Sir J. Paget informs me that he feels some doubt about the facts recorded by Sir J. Simpson ('Monthly Journal of Medical Science' Edinburgh 1848 new series volume 2 page 890) of the regrowth of limbs in the womb in the case of man.)

In the case of those animals which may be bisected or chopped into pieces, and of which every fragment will reproduce the whole, the power of regrowth must be diffused throughout the whole body. Nevertheless there seems to be much truth in the view maintained by Prof. Lessona (27/23. 'Atti della Soc. Ital.

di Sc. Nat.' volume 11 1869 page 493.), that this capacity is generally a localised and special one, serving to replace parts which are eminently liable to be lost in each particular animal. The most striking case in favour of this view, is that the terrestrial salamander, according to Lessona, cannot reproduce lost parts, whilst another species of the same genus, the aquatic salamander, has extraordinary powers of regrowth, as we have just seen; and this animal is eminently liable to have its limbs, tail, eyes and jaws bitten off by other tritons. (27/24. Lessona states that this is so in the paper just referred to. See also 'The American Naturalist' September 1871 page 579.) Even with the aquatic salamander the capacity is to a certain extent localised, for when M. Philipeaux (27/25. 'Comptes Rendus' October 1, 1866 and June 1867.) extirpated the entire fore limb together with the scapula, the power of regrowth was completely lost. It is also a remarkable fact, standing in opposition to a very general rule, that the young of the aquatic salamander do not possess the power of repairing their limbs in an equal degree with the adults (27/26. Bonnet 'Oeuvres Hist. Nat.' volume 5 page 294, as quoted by Prof. Rolleston in his remarkable address to the 36th annual meeting of the British Medical a.s.sociation.) but I do not know that they are more active, or can otherwise better escape the loss of their limbs, than the adults. The walking-stick insect, Diapheromera femorata, like other insects of the same order, can reproduce its legs in the mature state, and these from their great length must be liable to be lost: but the capacity is localised (as in the case of the salamander), for Dr. Scudder found (27/27. 'Proc. Boston Soc. of Nat. Hist.' volume 12 1868-69 page 1.), that if the limb was removed within the trochanto-femoral articulation, it was never renewed. When a crab is seized by one of its legs, this is thrown off at the basal joint, being afterwards replaced by a new leg; and it is generally admitted that this is a special provision for the safety of the animal. Lastly, with gasteropod molluscs, which are well known to have the power of reproducing their heads, Lessona shows that they are very liable to have their heads bitten off by fishes; the rest of the body being protected by the sh.e.l.l. Even with plants we see something of the same kind, for non-deciduous leaves and young stems have no power of regrowth, these parts being easily replaced by growth from new buds; whilst the bark and subjacent tissues of the trunks of trees have great power of regrowth, probably on account of their increase in diameter, and of their liability to injury from being gnawed by animals.

GRAFT-HYBRIDS.

It is well known from innumerable trials made in all parts of the world, that buds may be inserted into a stock, and that the plants thus raised are not affected in a greater degree than can be accounted for by changed nutrition.

Nor do the seedlings raised from such inserted buds partake of the character of the stock, though they are more liable to vary than are seedlings from the same variety growing on its own roots. A bud, also, may sport into a new and strongly-marked variety without any other bud on the same plant being in the least degree affected. We may therefore infer, in accordance with the common view, that each bud is a distinct individual, and that its formative elements do not spread beyond the parts subsequently developed from it. Nevertheless, we have seen in the abstract on graft-hybridisation in the eleventh chapter that buds certainly include formative matter, which can occasionally combine with that included in the tissues of a distinct variety or species; a plant intermediate between the two parent-forms being thus produced. In the case of the potato we have seen that the tubers produced from a bud of one kind inserted into another are intermediate in colour, size, shape and state of surface; that the stems, foliage, and even certain const.i.tutional peculiarities, such as precocity, are likewise intermediate. With these well- established cases, the evidence that graft-hybrids have also been produced with the laburnum, orange, vine, rose, etc., seems sufficient. But we do not know under what conditions this rare form of reproduction is possible. From these several cases we learn the important fact that formative elements capable of blending with those of a distinct individual (and this is the chief characteristic of s.e.xual generation), are not confined to the reproductive organs, but are present in the buds and cellular tissue of plants; and this is a fact of the highest physiological importance.

DIRECT ACTION OF THE MALE ELEMENT ON THE FEMALE.

In the eleventh chapter, abundant proofs were given that foreign pollen occasionally affects in a direct manner the mother-plant. Thus, when Gallesio fertilised an orange-flower with pollen from the lemon, the fruit bore stripes of perfectly characterised lemon-peel. With peas, several observers have seen the colour of the seed-coats and even of the pod directly affected by the pollen of a distinct variety. So it has been with the fruit of the apple, which consists of the modified calyx and upper part of the flower-stalk. In ordinary cases these parts are wholly formed by the mother-plant. We here see that the formative elements included within the male element or pollen of one variety can affect and hybridise, not the part which they are properly adapted to affect, namely, the ovules, but the partially-developed tissues of a distinct variety or species. We are thus brought half-way towards a graft- hybrid, in which the formative elements included within the tissues of one individual combine with those included in the tissues of a distinct variety or species, thus giving rise to a new and intermediate form, independently of the male or female s.e.xual organs.

With animals which do not breed until nearly mature, and of which all the parts are then fully developed, it is hardly possible that the male element should directly affect the female. But we have the a.n.a.logous and perfectly well-ascertained case of the male element affecting (as with the quagga and Lord Morton's mare) the female or her ova, in such a manner that when she is impregnated by another male her offspring are affected and hybridised by the first male. The explanation would be simple if the spermatozoa could keep alive within the body of the female during the long interval which has sometimes elapsed between the two acts of impregnation; but no one will suppose that this is possible with the higher animals.

DEVELOPMENT.

The fertilised germ reaches maturity by a vast number of changes: these are either slight and slowly effected, as when the child grows into the man, or are great and sudden, as with the metamorphoses of most insects. Between these extremes we have every gradation, even within the same cla.s.s; thus, as Sir J.

Lubbock has shown (27/28. 'Transact. Linn. Soc.' volume 24 1863 page 62.) there is an Ephemerous insect which moults above twenty times, undergoing each time a slight but decided change of structure; and these changes, as he further remarks, probably reveal to us the normal stages of development, which are concealed and hurried through or suppressed in most other insects. In ordinary metamorphoses, the parts and organs appear to become changed into the corresponding parts in the next stage of development; but there is another form of development, which has been called by Professor Owen metagenesis. In this case "the new parts are not moulded upon the inner surface of the old ones. The plastic force has changed its course of operation. The outer case, and all that gave form and character to the precedent individual, perish and are cast off; they are not changed into the corresponding parts of the new individual. These are due to a new and distinct developmental process," etc.

(27/29. 'Parthenogenesis' 1849 pages 25, 26. Prof. Huxley has some excellent remarks ('Medical Times' 1856 page 637) on this subject in reference to the development of star-fishes, and shows how curiously metamorphosis graduates into gemmation or zoid-formation, which is in fact the same as metagenesis.) Metamorphosis, however, graduates so insensibly, into metagenesis, that the two processes cannot be distinctly separated. For instance, in the last change which Cirripedes undergo, the alimentary ca.n.a.l and some other organs are moulded on pre-existing parts; but the eyes of the old and the young animal are developed in entirely different parts of the body; the tips of the mature limbs are formed within the larval limbs, and may be said to be metamorphosed from them; but their basal portions and the whole thorax are developed in a plane at right angles to the larval limbs and thorax; and this may be called metagenesis. The metagenetic process is carried to an extreme point in the development of some Echinoderms, for the animal in the second stage of development is formed almost like a bud within the animal of the first stage, the latter being then cast off like an old vestment, yet sometimes maintaining for a short period an independent vitality. (27/30. Prof. J. Reay Greene in Gunther's 'Record of Zoolog. Lit.' 1865 page 625.) If, instead of a single individual, several were to be thus developed metagenetically within a pre- existing form, the process would be called one of alternate generation. The young thus developed may either closely resemble the encasing parent-form, as with the larvae of Cecidomyia, or may differ to an astonishing degree, as with many parasitic worms and jelly-fishes; but this does not make any essential difference in the process, any more than the greatness or abruptness of the change in the metamorphoses of insects.

The whole question of development is of great importance for our present subject. When an organ, the eye, for instance, is metagenetically formed in a part of the body where during the previous stage of development no eye existed, we must look at it as a new and independent growth. The absolute independence of new and old structures, although corresponding in structure and function, is still more obvious when several individuals are formed within a previous form, as in the cases of alternate generation. The same important principle probably comes largely into play even in the case of apparently continuous growth, as we shall see when we consider the inheritance of modifications at corresponding ages.

We are led to the same conclusion, namely, the independence of parts successively developed, by another and quite distinct group of facts. It is well known that many animals belonging to the same order, and therefore not differing widely from each other, pa.s.s through an extremely different course of development. Thus certain beetles, not in any way remarkably different from others of the same order, undergo what has been called a hyper-metamorphosis-- that is, they pa.s.s through an early stage wholly different from the ordinary grub-like larva. In the same sub-order of crabs, namely, the Macroura, as Fritz Muller remarks, the river cray-fish is hatched under the same form which it ever afterwards retains; the young lobster has divided legs, like a Mysis; the Palaemon appears under the form of a Zoea, and Peneus under the Nauplius- form; and how wonderfully these larval forms differ from one another, is known to every naturalist. (27/31. Fritz Muller 'Fur Darwin' 1864 s. 65, 71. The highest authority on crustaceans, Prof. Milne-Edwards, insists ('Annal. des Sci. Nat.' 2nd series Zoolog. tome 3 page 322) on the difference in the metamorphosis of closely-allied genera.) Some other crustaceans, as the same author observes, start from the same point and arrive at nearly the same end, but in the middle of their development are widely different from one another.

Still more striking cases could be given with respect to the Echinodermata.

With the Medusae or jelly-fishes Professor Allman observes, "The cla.s.sification of the Hydroida would be a comparatively simple task if, as has been erroneously a.s.serted, generically-identical medusoids always arose from generically-identical polypoids; and, on the other hand, that generically- identical polypoids always gave origin to generically-identical medusoids." So again, Dr. Strethill Wright remarks, "In the life-history of the Hydroidae any phase, planuloid, polypoid, or medusoid, may be absent." (27/32. Prof. Allman 'Annals and Mag. of Nat. Hist.' 3rd series volume 13 1864 page 348; Dr. S.

Wright ibid volume 8 1861 page 127. See also page 358 for a.n.a.logous statements by Sars.)

According to the belief now generally accepted by our best naturalists, all the members of the same order or cla.s.s, for instance, the Medusae or the Macrourous crustaceans, are descended from a common progenitor. During their descent they have diverged much in structure, but have retained much in common; and this has occurred, though they have pa.s.sed through and still pa.s.s through marvellously different metamorphoses. This fact well ill.u.s.trates how independent each structure is from that which precedes and that which follows it in the course of development.

THE FUNCTIONAL INDEPENDENCE OF THE ELEMENTS OR UNITS OF THE BODY.

Physiologists agree that the whole organism consists of a mult.i.tude of elemental parts, which are to a great extent independent of one another. Each organ, says Claude Bernard (27/33. 'Tissus Vivants' 1866 page 22.), has its proper life, its autonomy; it can develop and reproduce itself independently of the adjoining tissues. A great German authority, Virchow (27/34. 'Cellular Pathology' translated by Dr. Chance 1860 pages 14, 18, 83, 460.), a.s.serts still more emphatically that each system consists of an "enormous ma.s.s of minute centres of action...Every element has its own special action, and even though it derive its stimulus to activity from other parts, yet alone effects the actual performance of duties...Every single epithelial and muscular fibre- cell leads a sort of parasitical existence in relation to the rest of the body...Every single bone-corpuscle really possesses conditions of nutrition peculiar to itself." Each element, as Sir J. Paget remarks, lives its appointed time and then dies, and is replaced after being cast off or absorbed. (27/35. Paget 'Surgical Pathology' volume 1 1853 pages 12-14.) I presume that no physiologist doubts that, for instance, each bone-corpuscle of the finger differs from the corresponding corpuscle in the corresponding joint of the toe; and there can hardly be a doubt that even those on the corresponding sides of the body differ, though almost identical in nature.

This near approach to ident.i.ty is curiously shown in many diseases in which the same exact points on the right and left sides of the body are similarly affected; thus Sir J. Paget (27/36. Ibid page 19.) gives a drawing of a diseased pelvis, in which the bone has grown into a most complicated pattern, but "there is not one spot or line on one side which is not represented, as exactly as it would be in a mirror, on the other."

Many facts support this view of the independent life of each minute element of the body. Virchow insists that a single bone-corpuscle or a single cell in the skin may become diseased. The spur of a c.o.c.k, after being inserted into the ear of an ox, lived for eight years, and acquired a weight of 396 grammes (nearly fourteen ounces), and the astonishing length of twenty-four centimetres, or about nine inches; so that the head of the ox appeared to bear three horns. (27/37. See Prof. Mantegazza's interesting work 'Degli innesti Animali' etc. Milano 1865 page 51 tab. 3.) The tail of a pig has been grafted into the middle of its back, and reacquired sensibility. Dr. Ollier (27/38.

'De la Production Artificielle des Os' page 8.) inserted a piece of periosteum from the bone of a young dog under the skin of a rabbit, and true bone was developed. A mult.i.tude of similar facts could be given. The frequent presence of hairs and of perfectly developed teeth, even teeth of the second dent.i.tion, in ovarian tumours (27/39. Isidore Geoffroy Saint-Hilaire 'Hist. des Anomalies' tome 2 pages 549, 560, 562; Virchow ibid page 484. Lawson Tait 'The Pathology of Diseases of the Ovaries' 1874 pages 61, 62.), are facts leading to the same conclusion. Mr. Lawson Tait refers to a tumour in which "over 300 teeth were found, resembling in many respects milk-teeth;" and to another tumour, "full of hair which had grown and been shed from one little spot of skin not bigger than the tip of my little finger. The amount of hair in the sac, had it grown from a similarly sized area of the scalp, would have taken almost a lifetime to grow and be shed."

Whether each of the innumerable autonomous elements of the body is a cell or the modified product of a cell, is a more doubtful question, even if so wide a definition be given to the term, as to include cell-like bodies without walls and without nuclei. (27/40. For the most recent cla.s.sification of cells, see Ernst Hackel 'Generelle Morpholog.' b. 2 1866 s. 275.) The doctrine of omnis cellula e cellula is admitted for plants, and widely prevails with respect to animals. (27/41. Dr. W. Turner 'The Present Aspect of Cellular Pathology'

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Variation of Animals and Plants under Domestication Volume II Part 22 summary

You're reading The Variation of Animals and Plants under Domestication. This manga has been translated by Updating. Author(s): Charles Darwin. Already has 719 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com