Rural Hygiene - novelonlinefull.com
You’re read light novel Rural Hygiene Part 13 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
_Cost of plumbing installation._
A fair estimate of the cost of the plumbing in a house, including all the fixtures mentioned except the tank in the attic, including also the plumber's bill, is $150. This requires very careful buying, and implies an entire absence of bra.s.s or nickel-plated piping. If a high grade of fixtures, including nickel fittings and nickel piping, wherever it shows, is used, the cost of the fixtures alone, not including labor or piping other than mentioned, will be from $150 up.
_House drainage._
The term "plumbing" is generally used to include both the water-supply in the house, with all the fixtures pertaining thereto, and the carrying of the waste water to a point outside the house; it remains, therefore, to discuss the waste pipes connected with the plumbing fixtures.
[Ill.u.s.tration: FIG. 60.--Leveling the drain.]
The house-drain, or the pipe which carries the wastes from the house to the point of final disposal, is generally made of vitrified tile, and in ordinary practice is five inches inside diameter. The lower end of this drain discharges into a cesspool, or settling tank, or into a stream, as local conditions permit. This house-drain should be carefully laid in a straight line, both horizontally and vertically, for two reasons. In the first place, the velocity of flow in a straight pipe will be greater, and therefore the danger of stoppage will be decreased, and in the next place, if a stoppage does occur in the pipe, it can be cleaned out better if the pipe is straight than if it is laid with numerous bends.
Such a pipe should have a grade of at least one quarter inch to a foot, and this is conveniently given by tacking a little piece of wood one half inch thick on one end of a two-foot carpenter's level and then setting the pipe so that with this piece of wood resting on the pipe at one end and the end of the level itself on the pipe at its other end, the bubble will be in the middle. Figure 60 shows the carpenter's level in position on a level board, which rests on the hubs of three pipes.
The joints of this pipe should be made with Portland cement mixed with an equal part of sand, and the s.p.a.ce at the joint completely filled.
When nearing the house, it is very desirable that a manhole should be built so that if a stoppage occurs, it may be cleaned out without taking up the pipe. In city houses a running trap is always inserted just outside the house with a fresh-air inlet on the house side of the trap, as shown in Fig. 61. But for a single house this is not necessary, and it is wiser to omit the running trap.
The soil-pipe begins at the trap or at the cellar wall and runs up through the roof of the house, so that any gas in the drain or soil-pipe may escape at such a height as not to be objectionable. Through the cellar wall and up through the house the soil-pipe should be of cast-iron, which comes in six-foot lengths for this special purpose. Y's are provided by which the fixtures are connected to the soil-pipe, and the top of the pipe is covered with a zinc netting to keep out leaves and birds. This soil-pipe weighs about ten pounds per foot and is almost always four inches inside diameter. The length necessary is easily computed, since it runs from the outside cellar wall to the point where the vertical line of pipe rises and from that point in the cellar extends to the roof. Such a pipe may be estimated at two cents a pound with something additional for the Y's.
[Ill.u.s.tration: FIG. 61.--Water-supply installation.]
The soil-pipe must be well supported along the cellar wall on brackets or hung from the floor joists by short pieces of chain or band iron.
Special care must be taken to support the pipe at the elbow, where it turns upward, since a length of thirty feet of this pipe, weighing three hundred pounds, has to be provided for. It is a good practice to build a brick pier from the cellar bottom up to and around the elbow to support it firmly in the masonry.
The joints in this drainpipe should be made with lead, ramming some oak.u.m into the joints first and then pouring in enough lead melted to the right degree to provide an inch depth of joint. After the lead cools, it must be expanded or calked by driving the calking tool hard against it.
To prevent rain finding its way between the soil-pipe and the roof, a piece of lead is generally wrapped around the soil-pipe for a distance of twelve inches or so above the roof, and then a flat piece of lead extending out under the shingles is slipped over and soldered fast to the other lead piece.
The fixtures are connected to the iron pipe usually by lead pipe, the lead pipe being first wiped onto a bra.s.s ferrule, the ferrule being leaded into the Y branch. These Y branches are usually two inches in diameter and the lead pipe usually one and one quarter inches. Between the soil-pipe and the fixtures a trap must be provided with a water-seal of about an inch.
_Trap-vents._
In city plumbing it is customary to vent traps; that is, to carry another system of pipes from the top of the trap nearest the fixture up to and through the roof. On most roofs, where modern plumbing has been installed, are seen two pipes projecting, one the soil-pipe and the other the vent-pipe, indicating the location of a bath-room below (see Fig. 61). In a single house, however, and particularly in view of experiments made recently on the subject of trap siphonage, these trap-vents seem hardly necessary. They were formerly insisted upon because of the feeling that by the pa.s.sage of a large amount of water down the soil-pipe, sufficient suction might be induced to draw out the water from some small trap on the way, thereby opening a pa.s.sage for sewer gas into the room. Experiments have shown that it is practically impossible to draw off the water from a trap in this way, and that the system of vent-pipes does little more than add to the cost.
The traps themselves, however, are essential, and great care should be taken to see that each trap is in place and has a seal of the depth already mentioned. The best trap to use in any fixture is the simplest, and a plain S trap answers every purpose. It is always wise to have a clean-out at the bottom of the trap; that is, a small opening which can be closed with a screw plug, so that when the trap becomes clogged, it can be easily opened and cleaned (see Fig. 62).
[Ill.u.s.tration: FIG. 62.--A trap.]
_Water-closets._
A great many kinds of water-closets have been made and used, with various degrees of success. The old-fashioned pan-closet becomes easily clogged, allows matter to decompose in the receptacle under the valve, and, in spite of its being cheaper, should not be used. The long-hopper closet is also objectionable, for the same reason. A recent bulletin of the Maine State Board of Health, which gives the relative merits of the different forms now available, very directly and briefly, is here repeated:--
"The choice of a water-closet should be made from those which have the bowl and trap all in one piece, which are simple in construction, are self-cleansing, and have a safe water-seal. None should be considered except the short-hopper, the washout, the washdown, the syphonic, and the syphon-jet closets.
"Short-hopper closets not many years ago were considered desirable, but other styles costing but little more are better.
[Ill.u.s.tration: FIG. 63.--Washout water-closet.]
"The washout closet (Fig. 63) has too shallow a pool of water to receive the soil, and the trap below and the portion above the trap do not receive a sufficient scouring from the flush.
[Ill.u.s.tration: FIG. 64.--Washdown water-closet.]
"The washdown closet (Fig. 64) is an improvement over the washout.
Having a deep basin, a deep water-seal, smaller surfaces uncovered by water, and a more efficient scouring action, it is more cleanly. The washdown closet is really an improved short hopper.
[Ill.u.s.tration: FIG. 65.--Syphonic closet.]
"Of late years the principle of syphonic action has been applied to the washdown closet. Figure 65 shows the outline of a syphonic closet. It will be seen that the basin, as in the washdown closet, has considerable depth and holds a considerable quant.i.ty of water; but it differs in having a more contracted outlet. When the closet is flushed, the filling of this outlet forms a syphon, and then the pressure of the air upon the surface of the water in the basin drives the water into the soil-pipe with much force. At the breaking of the syphon, enough water is left in the trap to preserve the seal.
[Ill.u.s.tration: FIG. 66.--Syphon-jet closet.]
"In the syphon-jet closet (Fig. 66) there is added to the mechanism of the syphon closet a jet of water which helps to drive the contents of the bowl more rapidly into the outlet. These two closets, syphon and the syphon-jet, are preferable to those of any other style. Among other advantages they are more nearly noiseless than any other kinds.
"Recapitulating, it may be said, while the short-hopper and the washout closets may not deserve absolute condemnation, the advantages of the washdown, syphon, and the syphon-jet closets are so much greater that they should be chosen in all new work."
Properly to flush out the closet, a water-pipe connection must be made from the supply main. It would be quite possible to connect directly to the closet rim where the flush enters, but there are two objections urged against this. Sometimes, when the pressure is low and water is being drawn in the kitchen, if a faucet in the bath-room is opened, not only will no water come, but air is drawn into the pipe by the force of the running water below. A direct connection with a water-closet, it is conceivable, might allow filth to be drawn up into the water-pipe under certain conditions. The other objection is that the small pipe generally used in a house does not deliver water fast enough for effective flushing.
It is common, therefore, to put in, just back of or above the closet, a small copper-lined wooden tank which holds about three gallons and which can be discharged rapidly through a one-and-a-quarter-inch pipe. This tank with fittings costs about $10, and in a great many cases is probably unnecessary. It has the advantage, however, of allowing a small flow to enter the tank whenever emptied, to be automatically shut off by a float valve when filled. If the house has a tank supply or if the pressure is strong enough to insure a positive flow at all times, there can be no objection in a single family, where the flushing action will be insisted on by the mistress of the house in the interests of cleanliness, to making a direct connection between the closet and the house supply pipe. An automatic shut-off bibb would then be used on the water-pipe, allowing the water to flow freely as long as the bibb was opened, but closing automatically when released.
CHAPTER X
_SEWAGE DISPOSAL_
The subject of sewage disposal for a single house in the country does not at all present the elaborate problem that is suggested when the disposal of sewage of a city is under discussion. In the first place, the amount of sewage to be dealt with is moderate in quant.i.ty; and in the second place the area available on which the sewage may be treated is in almost all cases more than ample for the purpose. Nor is there the complication that arises with city sewage, due to the admixture of manufacturing wastes. The material to be handled is entirely domestic sewage and varies only according to the amount of water used in the house, making the sewage of greater or less strength according as less or more water is used. Sewage from a single house differs only in one respect disadvantageously from city sewage, namely, in the fact that the sewage, not having to pa.s.s through a long length of pipe, comes to the place of disposal in what is known as a fresh condition; that is, no organic changes have taken place in the material of which the sewage is composed.
_Definition of sewage._
The great bulk of sewage is water, and, in quant.i.ty, the amount of sewage to be cared for is about equal to the amount of water consumed in the household, although this will depend somewhat on the habits of the family. If, for example, part of the water-supply is used for an ornamental fountain in the front yard, or if in the summer time a large amount of water is used for sprinkling the lawns, that water is not converted into sewage, and the amount of the latter is thereby diminished; but, ordinarily, it is safe to say that the quant.i.ty of water supplied to the house and the quant.i.ty of sewage taken away from the house is identical, and since it is much easier to measure the water-supply than the sewage flow, the former is taken as the quant.i.ty of sewage to be treated.
In the course of its pa.s.sage through the house, however, the water has added to it a certain amount of polluting substances, largely derived from the kitchen sink, where dirt from vegetables and particles of vegetable material, together with more or less soap, are carried by the waste water from the sink into the drain. In the bath-room, also, some small amount of organic matter is added to the water, but the proportion of such matter to the total volume of water used is very small, probably not exceeding one tenth of one per cent. This small proportion is nevertheless sufficient to become very objectionable if allowed to decompose, and the problem of sewage disposal for a single house is to drain away the water, leaving behind the solids so disposed that they shall not subsequently cause offense by their putrefaction.
The process of decay is normal for all organic matter and is due to the agency of certain bacteria whose duty it is, providentially, to eliminate from the surface of the earth organic matter which otherwise would remain useless, if not destructive, to man. It is impossible to leave any vegetable or animal matter exposed to the air without this process of decay at once setting in. Apples left in the orchard at the end of the season inevitably are reduced and disappear in a short time.
Dead animals, whether large or small, in the same way succ.u.mb to the same process of nature, and it has been pointed out that, unless this provision did exist, the acc.u.mulation of such organic wastes since the settlement of this country would be so great as to make the country uninhabitable. Fortunately, however, this inevitable process breaks down the structure of all organic material, partly converting fiber and pulp into gas, partly liquefying the material and converting the remainder into inorganic matter which is of vast importance as food for plant life. A cycle is thus formed which may be best ill.u.s.trated in the case of cows which feed on the herbage of a meadow, the manure from the cows furnishing food for the gra.s.s which otherwise would soon exhaust the nutriment of the soil.
_Stream pollution._
The first fundamental principle of sewage disposal, therefore, is to distribute the organic matter in the sewage so that these beneficent bacteria may most rapidly and thoroughly accomplish their purpose.
During the last fifty years, a great deal of study has been expended on this problem, and while it has not as yet been entirely solved, certain essential features have been well established.
The most important factor promoting the activity of these agents of decay is the presence of air, since in many ways it has been proved that without air their action is impossible. Thus it has been shown that discharging sewage into a stream, whether the stream be a slow and sluggish one or whether it be a mountain stream churned into foam by repeated waterfalls, has little other power to act on organic matter than to hold it for transportation down stream, or to allow it to settle in slower reaches until mud banks have been acc.u.mulated which will be washed out again at the first freshet. Experiments have shown that the agencies to which certain diseases are attributed, commonly known as pathogenic bacteria, are frequently, if not always, found in sewage, and that when these bacteria are discharged into streams they may be carried with the stream hundreds of miles and retain all their power for evil, in case the water is used for drinking purposes. No right-minded person to-day will so abuse the rights of his fellow-citizens as deliberately to pour into a stream such unmistakable poison as sewage has proved itself to be. The fact is so well known that it is not worth while pointing out examples. It is enough to say that some of the worst epidemics of typhoid fever which this country has known have been traced to the agency of drinking water, polluted miles away by a relatively small amount of sewage.
In a number of states, laws have been pa.s.sed which expressly prohibit the discharge of sewage, even from a single house, into a stream of any sort, even though the stream is on the land of the man thus discharging sewage and where it would appear as if he alone might control the uses of that stream. Unfortunately, the machinery of the law does not always operate to detect and punish the breakers of the law, but any law which, as in this case, has so positive a reason for its existence, and violation of which is so certain to bring disaster on persons drinking the water of the stream below the point where the sewage is discharged, any law which appeals for its enforcement so directly to the common sense and right feeling of all intelligent people, seems hardly to need legal machinery for its enforcement. It must depend, as indeed all laws must depend, upon the intelligent support of the community, and surely no law would commend itself more urgently than this one forbidding the pollution of drinking water.
In spite of the fact that the lack of air in the water will prevent bacterial action, there are, nevertheless, many cases where the discharge of sewage into a stream may be permitted as being the best solution of the disposal problem, provided always that the stream is not used and is not likely to be used for drinking water. Such cases occur where the stream is relatively large and where the level of the stream is fairly regular, so that there is no likelihood of the deposit of organic matter on the banks during the falling of the stream level.
Examples of this sort might be cited in the vicinity of the Mohawk or Hudson River, or in the vicinity of any of the larger rivers of any populous state, since although the water of the Mohawk is used by the city of Albany for drinking purposes, yet the amount of organic matter which inevitably finds its way into such rivers precludes its use for drinking without filtration. Into the Hudson below Albany there can hardly be any question of the propriety of discharging sewage from a single house.
Again, houses in the vicinity of large bodies of still water may without question be allowed to discharge into those lakes. For example, houses in the vicinity of Lake Ontario or Lake Michigan, or even of much smaller lakes, should not contribute any offensive pollution to the waters of the lake. In New York State, some of the smaller lakes are used as water-supplies for cities, as, for example, Owasco Lake for the city of Auburn and Skaneateles Lake for the city of Syracuse, and, acting under the statutes, special laws have been pa.s.sed by the State Department of Health, forbidding any discharge of any kind of household wastes into these lakes. The same is done in other states. Here, again, it is a question of the drinking supply which is being considered, and not a question of the possibility of any nuisance being committed.