Home

Experimental Researches in Electricity Part 6

Experimental Researches in Electricity - novelonlinefull.com

You’re read light novel Experimental Researches in Electricity Part 6 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

209. On making and breaking contact between the soft iron bar and the poles of the magnet, the galvanometer was strongly affected; on detaching the zinc it was still more strongly affected in the same direction. On taking all the precautions before alluded to (207.), with others, it was abundantly proved that the current induced by the magnet in copper was far more powerful than in zinc.

210. The copper was then compared in a similar manner with tin, lead, and iron, and surpa.s.sed them all, even more than it did zinc. The zinc was then compared experimentally with the tin, lead, and iron, and found to produce a more powerful current than any of them. Iron in the same manner proved superior to tin and lead. Tin came next, and lead the last.

211. Thus the order of these metals is copper, zinc, iron, tin, and lead.

It is exactly their order with respect to conducting power for electricity, and, with the exception of iron, is the order presented by the magneto-rotation experiments of Messrs. Babbage, Herschel, Harris, &c. The iron has additional power in the latter kind of experiments, because of its ordinary magnetic relations, and its place relative to magneto-electric action of the kind now under investigation cannot be ascertained by such trials. In the manner above described it may be correctly ascertained[A].

[A] Mr. Christie, who being appointed reporter upon this paper, had it in his hands before it was complete, felt the difficulty (202.); and to satisfy his mind, made experiments upon iron and copper with the large magnet(44.), and came to the same conclusions as I have arrived at. The two sets of experiments were perfectly independent of each other, neither of us being aware of the other's proceedings.

212. It must still be observed that in these experiments the whole effect between different metals is not obtained; for of the thirty-four feet of wire included in each circuit, eighteen feet are copper in both, being the wire of the galvanometer coils; and as the whole circuit is concerned in the resulting force of the current, tin's circ.u.mstance must tend to diminish the difference which would appear between the metals if the circuits were of the same substances throughout. In the present case the difference obtained is probably not more than a half of that which would be given if the whole of each circuit were of one metal.

213. These results tend to prove that the currents produced by magneto-electric induction in bodies is proportional to their conducting power. That they are _exactly_ proportional to and altogether dependent upon the conducting power, is, I think, proved by the perfect neutrality displayed when two metals or other substances, as acid, water, &c. &c.

(201. 186.), are opposed to each other in their action. The feeble current which tends to be produced in the worse conductor, has its transmission favoured in the better conductor, and the stronger current which tends to form in the latter has its intensity diminished by the obstruction of the former; and the forces of generation and obstruction are so perfectly neutralize each other exactly. Now as the obstruction is inversely as the balanced as to conducting power, the tendency to generate a current must be directly as that power to produce this perfect equilibrium.

214. The cause of the equality of action under the various circ.u.mstances described, where great extent of wire (183.) or wire and water (181.) were connected together, which yet produced such different effects upon the magnet, is now evident and simple.

215. The effects of a rotating substance upon a needle or magnet ought, where ordinary magnetism has no influence, to be directly as the conducting power of the substance; and I venture now to predict that such will be found to be the case; and that in all those instances where non-conductors have been supposed to exhibit this peculiar influence, the motion has been due to some interfering cause of an ordinary kind; as mechanical communication of motion through the parts of the apparatus, or otherwise (as in the case Mr. Harris has pointed out[A]); or else to ordinary magnetic attractions. To distinguish the effects of the latter from those of the induced electric currents, I have been able to devise a most perfect test, which shall be almost immediately described (243.).

[A] Philosophical Transactions, 1831. p. 68.

216. There is every reason to believe that the magnet or magnetic needle will become an excellent measurer of the conducting power of substances rotated near it; for I have found by careful experiment, that when a constant current of electricity was sent successively through a series of wires of copper, platina, zinc, silver, lead, and tin, drawn to the same diameter; the deflection of the needle was exactly equal by them all. It must be remembered that when bodies are rotated in a horizontal plane, the magnetism of the earth is active upon them. As the effect is general to the whole of the plate, it may not interfere in these cases; but in some experiments and calculations may be of important consequence.

217. Another point which I endeavoured to ascertain, was, whether it was essential or not that the moving part of the wire should, in cutting the magnetic curves, pa.s.s into positions of greater or lesser magnetic force; or whether, always intersecting curves of equal magnetic intensity, the mere motion was sufficient for the production of the current. That the latter is true, has been proved already in several of the experiments on terrestrial magneto-electric induction. Thus the electricity evolved from the copper plate (149.), the currents produced in the rotating globe (161, &c.), and those pa.s.sing through the moving wire (171.), are all produced under circ.u.mstances in which the magnetic force could not but be the same during the whole experiments.

218. To prove the point with an ordinary magnet, a copper disc was cemented upon the end of a cylinder magnet, with paper intervening; the magnet and disc were rotated together, and collectors (attached to the galvanometer) brought in contact with the circ.u.mference and the central part of the copper plate. The galvanometer needle moved as in former cases, and the _direction_ of motion was the _same_ as that which would have resulted, if the copper only had revolved, and the magnet been fixed. Neither was there any apparent difference in the quant.i.ty of deflection. Hence, rotating the magnet causes no difference in the results; for a rotatory and a stationary magnet produce the same effect upon the moving copper.

219. A copper cylinder, closed at one extremity, was then put over the magnet, one half of which it inclosed like a cap; it was firmly fixed, and prevented from touching the magnet anywhere by interposed paper. The arrangement was then floated in a narrow jar of mercury, so that the lower edge of the copper cylinder touched the fluid metal; one wire of the galvanometer dipped into this mercury, and the other into a little cavity in the centre of the end of the copper cap. Upon rotating the magnet and its attached cylinder, abundance of electricity pa.s.sed through the galvanometer, and in the same direction as if the cylinder had rotated only, the magnet being still. The results therefore were the same as those with the disc (218.).

220. That the metal of the magnet itself might be subst.i.tuted for the moving cylinder, disc, or wire, seemed an inevitable consequence, and yet one which would exhibit the effects of magneto-electric induction in a striking form. A cylinder magnet had therefore a little hole made in the centre of each end to receive a drop of mercury, and was then floated pole upwards in the same metal contained in a narrow jar. One wire from the galvanometer dipped into the mercury of the jar, and the other into the drop contained in the hole at the upper extremity of the axis. The magnet was then revolved by a piece of string pa.s.sed round it, and the galvanometer-needle immediately indicated a powerful current of electricity. On reversing the order of rotation, the electrical current was reversed. The direction of the electricity was the same as if the copper cylinder (219.) or a copper wire had revolved round the fixed magnet in the same direction as that which the magnet itself had followed. Thus a _singular independence_ of the magnetism and the bar in which it resides is rendered evident.

221. In the above experiment the mercury reached about halfway up the magnet; but when its quant.i.ty was increased until within one eighth of an inch of the top, or diminished until equally near the bottom, still the same effects and the _same direction_ of electrical current was obtained.

But in those extreme proportions the effects did not appear so strong as when the surface of the mercury was about the middle, or between that and an inch from each end. The magnet was eight inches and a half long, and three quarters of an inch in diameter.

222. Upon inversion of the magnet, and causing rotation in the same direction, i.e. always screw or always unscrew, then a contrary current of electricity was produced. But when the motion of the magnet was continued in a direction constant in relation to its _own axis_, then electricity of the same kind was collected at both poles, and the opposite electricity at the equator, or in its neighbourhood, or in the parts corresponding to it.

If the magnet be held parallel to the axis of the earth, with its unmarked pole directed to the pole star, and then rotated so that the parts at its southern side pa.s.s from west to east in conformity to the motion of the earth; then positive electricity may be collected at the extremities of the magnet, and negative electricity at or about the middle of its ma.s.s.

223. When the galvanometer was very sensible, the mere spinning of the magnet in the air, whilst one of the galvanometer wires touched the extremity, and the other the equatorial parts, was sufficient to evolve a current of electricity and deflect the needle.

224. Experiments were then made with a similar magnet, for the purpose of ascertaining whether any return of the electric current could occur at the central or axial parts, they having the same angular velocity of rotation as the other parts (259.) the belief being that it could not.

225. A cylinder magnet, seven inches in length, and three quarters of an inch in diameter, had a hole pierced in the direction of its axis from one extremity, a quarter of an inch in diameter, and three inches deep. A copper cylinder, surrounded by paper and amalgamated at both extremities, was introduced so as to be in metallic contact at the bottom of the hole, by a little mercury, with the middle of the magnet; insulated at the sides by the paper; and projecting about a quarter of an inch above the end of the steel. A quill was put over the copper rod, which reached to the paper, and formed a cup to receive mercury for the completion of the circuit. A high paper edge was also raised round that end of the magnet and mercury put within it, which however had no metallic connexion with that in the quill, except through the magnet itself and the copper rod (fig. 34.). The wires A and B from the galvanometer were dipped into these two portions of mercury; any current through them could, therefore, only pa.s.s down the magnet towards its equatorial parts, and then up the copper rod; or vice versa.

226. When thus arranged and rotated screw fashion, the marked end of the galvanometer needle went west, indicating that there was a current through the instrument from A to B and consequently from B through the magnet and copper rod to A (fig. 34.).

227. The magnet was then put into a jar of mercury (fig. 35.) as before (219.); the wire A left in contact with the copper axis, but the wire B dipped in the mercury of the jar, and therefore in metallic communication with the equatorial parts of the magnet instead of its polar extremity. On revolving the magnet screw fashion, the galvanometer needle was deflected in the same direction as before, but far more powerfully. Yet it is evident that the parts of the magnet from the equator to the pole were out of the electric circuit.

228. Then the wire A was connected with the mercury on the extremity of the magnet, the wire B still remaining in contact with that in the jar (fig.

36.), so that the copper axis was altogether out of the circuit. The magnet was again revolved screw fashion, and again caused the same deflection of the needle, the current being as strong as it was in the last trial (227.), and much stronger than at first (226.).

229. Hence it is evident that there is no discharge of the current at the centre of the magnet, for the current, now freely evolved, is up through the magnet; but in the first experiment (226.) it was down. In fact, at that time, it was only the part of the moving metal equal to a little disc extending from the end of the wire B in the mercury to the wire A that was efficient, i.e. moving with a different angular velocity to the rest of the circuit (258.); and for that portion the direction of the current is consistent with the other results.

230. In the two after experiments, the _lateral_ parts of the magnet or of the copper rod are those which move relative to the other parts of the circuit, i.e. the galvanometer wires; and being more extensive, intersecting more curves, or moving with more velocity, produce the greater effect. For the discal part, the direction of the induced electric current is the same in all, namely, from the circ.u.mference towards the centre.

231. The law under which the induced electric current excited in bodies moving relatively to magnets, is made dependent on the intersection of the magnetic curves by the metal (114.) being thus rendered more precise and definite (217. 220. 224.), seem now even to apply to the cause in the first section of the former paper (26.); and by rendering a perfect reason for the effects produced, take away any for supposing that peculiar condition, which I ventured to call the electro-tonic state (60.).

232. When an electrical current is pa.s.sed through a wire, that wire is surrounded at every part by magnetic curves, diminishing in intensity according to their distance from the wire, and which in idea may be likened to rings situated in planes perpendicular to the wire or rather to the electric current within it. These curves, although different in form, are perfectly a.n.a.logous to those existing between two contrary magnetic poles opposed to each other; and when a second wire, parallel to that which carries the current, is made to approach the latter (18.), it pa.s.ses through magnetic curves exactly of the same kind as those it would intersect when carried between opposite magnetic poles (109.) in one direction; and as it recedes from the inducing wire, it cuts the curves around it in the same manner that it would do those between the same poles if moved in the other direction.

233. If the wire NP (fig. 40.) have an electric current pa.s.sed through it in the direction from P to N, then the dotted ring may represent a magnetic curve round it, and it is in such a direction that if small magnetic needles lie placed as tangents to it, they will become arranged as in the figure, _n_ and _s_ indicating north and south ends (14. _note_.).

234. But if the current of electricity were made to cease for a while, and magnetic poles were used instead to give direction to the needles, and make them take the same position as when under the influence of the current, then they must be arranged as at fig. 41; the marked and unmarked poles _ab_ above the wire, being in opposite directions to those _a'b'_ below. In such a position therefore the magnetic curves between the poles _ab_ and _a'b'_ have the same general direction with the corresponding parts of the ring magnetic curve surrounding the wire NP carrying an electric current.

235. If the second wire _pn_ (fig. 40.) be now brought towards the princ.i.p.al wire, carrying a current, it will cut an infinity of magnetic curves, similar in direction to that figured, and consequently similar in direction to those between the poles _ab_ of the magnets (fig. 41.), and it will intersect these current curves in the same manner as it would the magnet curves, if it pa.s.sed from above between the poles downwards. Now, such an intersection would, with the magnets, induce an electric current in the wire from _p_ to _n_ (114.); and therefore as the curves are alike in arrangement, the same effect ought to result from the intersection of the magnetic curves dependent on the current in the wire NP; and such is the case, for on approximation the induced current is in the opposite direction to the princ.i.p.al current (19.).

236. If the wire _p'n'_ be carried up from below, it will pa.s.s in the opposite direction between the magnetic poles; but then also the magnetic poles themselves are reversed (fig. 41.), and the induced current is therefore (114.) still in the same direction as before. It is also, for equally sufficient and evident reasons, in the same direction, if produced by the influence of the curves dependent upon the wire.

237. When the second wire is retained at rest in the vicinity the princ.i.p.al wire, no current is induced through it, for it is intersecting no magnetic curves. When it is removed from the princ.i.p.al wire, it intersects the curves in the opposite direction to what it did before (235.); and a current in the opposite direction is induced, which therefore corresponds with the direction of the princ.i.p.al current (19.). The same effect would take place if by inverting the direction of motion of the wire in pa.s.sing between either set of poles (fig. 41.), it were made to intersect the curves there existing in the opposite direction to what it did before.

238. In the first experiments (10. 13.), the inducing wire and that under induction were arranged at a fixed distance from each other, and then an electric current sent through the former. In such cases the magnetic curves themselves must be considered as moving (if I may use the expression) across the wire under induction, from the moment at which they begin to be developed until the magnetic force of the current is at its utmost; expanding as it were from the wire outwards, and consequently being in the same relation to the fixed wire under induction as if _it_ had moved in the opposite direction across them, or towards the wire carrying the current.

Hence the first current induced in such cases was in the contrary direction to the princ.i.p.al current (17. 235.). On breaking the battery contact, the magnetic curves (which are mere expressions for arranged magnetic forces) may be conceived as contracting upon and returning towards the failing electrical current, and therefore move in the opposite direction across the wire, and cause an opposite induced current to the first.

239. When, in experiments with ordinary magnets, the latter, in place of being moved past the wires, were actually made near them (27. 36.), then a similar progressive development of the magnetic curves may be considered as having taken place, producing the effects which would have occurred by motion of the wires in one direction; the destruction of the magnetic power corresponds to the motion of the wire in the opposite direction.

240. If, instead of intersecting the magnetic curves of a straight wire carrying a current, by approximating or removing a second wire (235.), a revolving plate be used, being placed for that purpose near the wire, and, as it were, amongst the magnetic curves, then it ought to have continuous electric currents induced within it; and if a line joining the wire with the centre of the plate were perpendicular to both, then the induced current ought to be, according to the law (114.), directly across the plate, from one side to the other, and at right angles to the direction of the inducing current.

241. A single metallic wire one twentieth of an inch in diameter had an electric current pa.s.sed through it, and a small copper disc one inch and a half in diameter revolved near to and under, but not in actual contact with it (fig. 39). Collectors were then applied at the opposite edges of the disc, and wires from them connected with the galvanometer. As the disc revolved in one direction, the needle was deflected on one side: and when the direction of revolution was reversed, the needle was inclined on the other side, in accordance with the results antic.i.p.ated.

242. Thus the reasons which induce me to suppose a particular state in the wire (60.) have disappeared; and though it still seems to me unlikely that a wire at rest in the neighbourhood of another carrying a powerful electric current is entirely indifferent to it, yet I am not aware of any distinct _facts_ which authorize the conclusion that it is in a particular state.

243. In considering the nature of the cause a.s.signed in these papers to account for the mutual influence of magnets and moving metals (120.), and comparing it with that heretofore admitted, namely, the induction of a feeble magnetism like that produced in iron, it occurred to me that a most decisive experimental test of the two views could be applied (215.).

244. No other known power has like direction with that exerted between an electric current and a magnetic pole; it is tangential, while all other forces, acting at a distance, are direct. Hence, if a magnetic pole on one side of a revolving plate follow its course by reason of its obedience to the tangential force exerted upon it by the very current of electricity which it has itself caused, a similar pole on the opposite side of the plate should immediately set it free from this force; for the currents which tend to be formed by the action of the two poles are in opposite directions; or rather no current tends to be formed, or no magnetic curves are intersected (114.); and therefore the magnet should remain at rest. On the contrary, if the action of a north magnetic pole were to produce a southness in the nearest part of the copper plate, and a diffuse northness elsewhere (82.), as is really the case with iron; then the use of another north pole on the opposite side of the same part of the plate should double the effect instead of destroying it, and double the tendency of the first magnet to move with the plate.

245. A thick copper plate (85.) was therefore fixed on a vertical axis, a bar magnet was suspended by a plaited silk cord, so that its marked pole hung over the edge of the plate, and a sheet of paper being interposed, the plate was revolved; immediately the magnetic pole obeyed its motion and pa.s.sed off in the same direction. A second magnet of equal size and strength was then attached to the first, so that its marked pole should hang _beneath_ the edge of the copper plate in a corresponding position to that above, and at an equal distance (fig. 37.). Then a paper sheath or screen being interposed as before, and the plate revolved, the poles were found entirely indifferent to its motion, although either of them alone would have followed the course of rotation.

246. On turning one magnet round, so that _opposite_ poles were on each side of the plate, then the mutual action of the poles and the moving metal was a maximum.

247. On suspending one magnet so that its axis was level with the plate, and either pole opposite its edge, the revolution of the plate caused no motion of the magnet. The electrical currents dependent upon induction would now tend to be produced in a vertical direction across the thickness of the plate, but could not be so discharged, or at least only to so slight a degree as to leave all effects insensible; but ordinary magnetic induction, or that on an iron plate, would be equally if not more powerfully developed in such a position (251.).

248. Then, with regard to the production of electricity in these cases:--whenever motion was communicated by the plate to the magnets, currents existed; when it was not communicated, they ceased. A marked pole of a large bar magnet was put under the edge of the plate; collectors (86.) applied at the axis and edge of the plate as on former occasions (fig.

38.), and these connected with the galvanometer; when the plate was revolved, abundance of electricity pa.s.sed to the instrument. The unmarked pole of a similar magnet was then put over the place of the former pole, so that contrary poles were above and below; on revolving the plate, the electricity was more powerful than before. The latter magnet was then turned end for end, so that marked poles were both above and below the plate, and then, upon revolving it, scarcely any electricity was procured.

By adjusting the distance of the poles so as to correspond with their relative force, they at last were brought so perfectly to neutralize each other's inductive action upon the plate, that no electricity could be obtained with the most rapid motion.

249. I now proceeded to compare the effect of similar and dissimilar poles upon iron and copper, adopting for the purpose Mr. Sturgeon's very useful form of Arago's experiment. This consists in a circular plate of metal supported in a vertical plane by a horizontal axis, and weighted a little at one edge or rendered excentric so as to vibrate like a pendulum. The poles of the magnets are applied near the side and edges of these plates, and then the number of vibrations, required to reduce the vibrating arc a certain constant quant.i.ty, noted. In the first description of this instrument[A] it is said that opposite poles produced the greatest r.e.t.a.r.ding effect, and similar poles none; and yet within a page of the place the effect is considered as of the same kind with that produced in iron.

[A] Edin. Phil. Journal, 1825, p. 124.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Keyboard Immortal

Keyboard Immortal

Keyboard Immortal Chapter 2772: Peak Acting Author(s) : 六如和尚, Monk Of The Six Illusions View : 2,003,752
Alchemy Emperor Of The Divine Dao

Alchemy Emperor Of The Divine Dao

Alchemy Emperor Of The Divine Dao Chapter 4402 Wait Author(s) : 孤单地飞, Flying Alone View : 13,833,712
Star Odyssey

Star Odyssey

Star Odyssey Chapter 3328: Bait Author(s) : Along With The Wind, 随散飘风 View : 2,340,715
Chaos' Heir

Chaos' Heir

Chaos' Heir Chapter 980: Tribe Author(s) : Eveofchaos View : 724,630
Demon Sword Maiden

Demon Sword Maiden

Demon Sword Maiden Volume 12 - Yomi-no-kuni: Chapter 106 – Grim Light In The Palace Hall Author(s) : Luo Jiang Shen, 罗将神, 罗酱, Carrot Sauce View : 432,069
Shadow Slave

Shadow Slave

Shadow Slave Chapter 2134: Deadly Rewards Author(s) : Guiltythree View : 5,982,471
The Runesmith

The Runesmith

The Runesmith Chapter 524: Setting Up. Author(s) : Kuropon View : 1,012,024

Experimental Researches in Electricity Part 6 summary

You're reading Experimental Researches in Electricity. This manga has been translated by Updating. Author(s): Michael Faraday. Already has 847 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com