Home

Elements of Chemistry Part 29

Elements of Chemistry - novelonlinefull.com

You’re read light novel Elements of Chemistry Part 29 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

SECT. II.

_Of Lixiviation._

This is an operation used in chemistry and manufactures for separating substances which are soluble in water from such as are insoluble. The large vat or tub, Pl. II. Fig. 12. having a hole D near its bottom, containing a wooden spiget and fosset or metallic stop-c.o.c.k DE, is generally used for this purpose. A thin stratum of straw is placed at the bottom of the tub; over this, the substance to be lixiviated is laid and covered by a cloth, then hot or cold water, according to the degree of solubility of the saline matter, is poured on. When the water is supposed to have dissolved all the saline parts, it is let off by the stop-c.o.c.k; and, as some of the water charged with salt necessarily adheres to the straw and insoluble matters, several fresh quant.i.ties of water are poured on. The straw serves to secure a proper pa.s.sage for the water, and may be compared to the straws or gla.s.s rods used in filtrating, to keep the paper from touching the sides of the funnel. The cloth which is laid over the matters under lixiviation prevents the water from making a hollow in these substances where it is poured on, through which it might escape without acting upon the whole ma.s.s.

This operation is less or more imitated in chemical experiments; but as in these, especially with a.n.a.lytical views, greater exactness is required, particular precautions must be employed, so as not to leave any saline or soluble part in the residuum. More water must be employed than in ordinary lixiviations, and the substances ought to be previously stirred up in the water before the clear liquor is drawn off, otherwise the whole ma.s.s might not be equally lixiviated, and some parts might even escape altogether from the action of the water. We must likewise employ fresh portions of water in considerable quant.i.ty, until it comes off entirely free from salt, which we may ascertain by means of the hydrometer formerly described.

In experiments with small quant.i.ties, this operation is conveniently performed in jugs or matra.s.ses of gla.s.s, and by filtrating the liquor through paper in a gla.s.s funnel. When the substance is in larger quant.i.ty, it may be lixiviated in a kettle of boiling water, and filtrated through paper supported by cloth in the wooden frame, Pl. II.

Fig. 3. and 4.; and in operations in the large way, the tub already mentioned must be used.

SECT. III.

_Of Evaporation._

This operation is used for separating two substances from each other, of which one at least must be fluid, and whose degrees of volatility are considerably different. By this means we obtain a salt, which has been dissolved in water, in its concrete form; the water, by heating, becomes combined with caloric, which renders it volatile, while the particles of the salt being brought nearer to each other, and within the sphere of their mutual attraction, unite into the solid state.

As it was long thought that the air had great influence upon the quant.i.ty of fluid evaporated, it will be proper to point out the errors which this opinion has produced. There certainly is a constant slow evaporation from fluids exposed to the free air; and, though this species of evaporation may be considered in some degree as a solution in air, yet caloric has considerable influence in producing it, as is evident from the refrigeration which always accompanies this process; hence we may consider this gradual evaporation as a compound solution made partly in air, and partly in caloric. But the evaporation which takes place from a fluid kept continually boiling, is quite different in its nature, and in it the evaporation produced by the action of the air is exceedingly inconsiderable in comparison with that which is occasioned by caloric. This latter species may be termed _vaporization_ rather than _evaporation_. This process is not accelerated in proportion to the extent of evaporating surface, but in proportion to the quant.i.ties of caloric which combine with the fluid. Too free a current of cold air is often hurtful to this process, as it tends to carry off caloric from the water, and consequently r.e.t.a.r.ds its conversion into vapour. Hence there is no inconvenience produced by covering, in a certain degree, the vessels in which liquids are evaporated by continual boiling, provided the covering body be of such a nature as does not strongly draw off the caloric, or, to use an expression of Dr Franklin's, provided it be a bad conductor of heat. In this case, the vapours escape through such opening as is left, and at least as much is evaporated, frequently more than when free access is allowed to the external air.

As during evaporation the fluid carried off by caloric is entirely lost, being sacrificed for the sake of the fixed substances with which it was combined, this process is only employed where the fluid is of small value, as water, for instance. But, when the fluid is of more consequence, we have recourse to distillation, in which process we preserve both the fixed substance and the volatile fluid. The vessels employed for evaporation are basons or pans of copper, silver, or lead, Pl. II. Fig. 13. and 15. or capsules of gla.s.s, porcellain, or stone ware, Pl. II. A, Fig. 1. and 2. Pl. III. Fig. 3 and 4. The best utensils for this purpose are made of the bottoms of gla.s.s retorts and matra.s.ses, as their equal thinness renders them more fit than any other kind of gla.s.s vessel for bearing a brisk fire and sudden alterations of heat and cold without breaking.

As the method of cutting these gla.s.s vessels is no where described in books, I shall here give a description of it, that they may be made by chemists for themselves out of spoiled retorts, matra.s.ses, and recipients, at a much cheaper rate than any which can be procured from gla.s.s manufacturers. The instrument, Pl. III. Fig. 5. consisting of an iron ring AC, fixed to the rod AB, having a wooden handle D, is employed as follows: Make the ring red hot in the fire, and put it upon the matra.s.s G, Fig. 6. which is to be cut; when the gla.s.s is sufficiently heated, throw on a little cold water, and it will generally break exactly at the circular line heated by the ring.

Small flasks or phials of thin gla.s.s are exceeding good vessels for evaporating small quant.i.ties of fluid; they are very cheap, and stand the fire remarkably. One or more of these may be placed upon a second grate above the furnace, Pl. III. Fig. 2. where they will only experience a gentle heat. By this means a great number of experiments may be carried on at one time. A gla.s.s retort, placed in a sand bath, and covered with a dome of baked earth, Pl. III. Fig. 1. answers pretty well for evaporations; but in this way it is always considerably slower, and is even liable to accidents; as the sand heats unequally, and the gla.s.s cannot dilate in the same unequal manner, the retort is very liable to break. Sometimes the sand serves exactly the office of the iron ring formerly mentioned; for, if a single drop of vapour, condensed into liquid, happens to fall upon the heated part of the vessel, it breaks circularly at that place. When a very intense fire is necessary, earthen crucibles may be used; but we generally use the word _evaporation_ to express what is produced by the temperature of boiling water, or not much higher.

SECT. IV.

_Of Cristallization._

In this process the integrant parts of a solid body, separated from each other by the intervention of a fluid, are made to exert the mutual attraction of aggregation, so as to coalesce and reproduce a solid ma.s.s.

When the particles of a body are only separated by caloric, and the substance is thereby retained in the liquid state, all that is necessary for making it cristallize, is to remove a part of the caloric which is lodged between its particles, or, in other words, to cool it. If this refrigeration be slow, and the body be at the same time left at rest, its particles a.s.sume a regular arrangement, and cristallization, properly so called, takes place; but, if the refrigeration is made rapidly, or if the liquor be agitated at the moment of its pa.s.sage to the concrete state, the cristallization is irregular and confused.

The same phenomena occur with watery solutions, or rather in those made partly in water, and partly by caloric. So long as there remains a sufficiency of water and caloric to keep the particles of the body asunder beyond the sphere of their mutual attraction, the salt remains in the fluid state; but, whenever either caloric or water is not present in sufficient quant.i.ty, and the attraction of the particles for each other becomes superior to the power which keeps them asunder, the salt recovers its concrete form, and the cristals produced are the more regular in proportion as the evaporation has been slower and more tranquilly performed.

All the phenomena we formerly mentioned as taking place during the solution of salts, occur in a contrary sense during their cristallization. Caloric is disengaged at the instant of their a.s.suming the solid state, which furnishes an additional proof of salt being held in solution by the compound action of water and caloric. Hence, to cause salts to cristallize which readily liquify by means of caloric, it is not sufficient to carry off the water which held them in solution, but the caloric united to them must likewise be removed. Nitrat of potash, oxygenated muriat of potash, alum, sulphat of soda, &c. are examples of this circ.u.mstance, as, to make these salts cristallize, refrigeration must be added to evaporation. Such salts, on the contrary, as require little caloric for being kept in solution, and which, from that circ.u.mstance, are nearly equally soluble in cold and warm water, are cristallizable by simply carrying off the water which holds them in solution, and even recover their solid state in boiling water; such are sulphat of lime, muriat of potash and of soda, and several others.

The art of refining saltpetre depends upon these properties of salts, and upon their different degrees of solubility in hot and cold water.

This salt, as produced in the manufactories by the first operation, is composed of many different salts; some are deliquescent, and not susceptible of being cristallized, such as the nitrat and muriat of lime; others are almost equally soluble in hot and cold water, as the muriats of potash and of soda; and, lastly, the saltpetre, or nitrat of potash, is greatly more soluble in hot than it is in cold water. The operation is begun, by pouring upon this mixture of salts as much water as will hold even the least soluble, the muriats of soda and of potash, in solution; so long as it is hot, this quant.i.ty readily dissolves all the saltpetre, but, upon cooling, the greater part of this salt cristallizes, leaving about a sixth part remaining dissolved, and mixed with the nitrat of lime and the two muriats. The nitre obtained by this process is still somewhat impregnated with other salts, because it has been cristallized from water in which these abound: It is completely purified from these by a second solution in a small quant.i.ty of boiling water, and second cristallization. The water remaining after these cristallizations of nitre is still loaded with a mixture of saltpetre, and other salts; by farther evaporation, crude saltpetre, or rough-petre, as the workmen call it, is procured from it, and this is purified by two fresh solutions and cristallizations.

The deliquescent earthy salts which do not contain the nitric acid are rejected in this manufacture; but those which consist of that acid neutralized by an earthy base are dissolved in water, the earth is precipitated by means of potash, and allowed to subside; the clear liquor is then decanted, evaporated, and allowed to cristallize. The above management for refining saltpetre may serve as a general rule for separating salts from each other which happen to be mixed together. The nature of each must be considered, the proportion in which each dissolves in given quant.i.ties of water, and the different solubility of each in hot and cold water. If to these we add the property which some salts possess, of being soluble in alkohol, or in a mixture of alkohol and water, we have many resources for separating salts from each other by means of cristallization, though it must be allowed that it is extremely difficult to render this separation perfectly complete.

The vessels used for cristallization are pans of earthen ware, A, Pl.

II. Fig. 1. and 2. and large flat dishes, Pl. III. Fig. 7. When a saline solution is to be exposed to a slow evaporation in the heat of the atmosphere, with free access of air, vessels of some depth, Pl. III.

Fig. 3. must be employed, that there may be a considerable body of liquid; by this means the cristals produced are of considerable size, and remarkably regular in their figure.

Every species of salt cristallizes in a peculiar form, and even each salt varies in the form of its cristals according to circ.u.mstances, which take place during cristallization. We must not from thence conclude that the saline particles of each species are indeterminate in their figures: The primative particles of all bodies, especially of salts, are perfectly constant in their specific forms; but the cristals which form in our experiments are composed of congeries of minute particles, which, though perfectly equal in size and shape, may a.s.sume very dissimilar arrangements, and consequently produce a vast variety of regular forms, which have not the smallest apparent resemblance to each other, nor to the original cristal. This subject has been very ably treated by the Abbe Hauy, in several memoirs presented to the Academy, and in his work upon the structure of cristals: It is only necessary to extend generally to the cla.s.s of salts the principles he has particularly applied to some cristalized stones.

SECT. V.

_Of Simple Distillation._

As distillation has two distinct objects to accomplish, it is divisible into simple and compound; and, in this section, I mean to confine myself entirely to the former. When two bodies, of which one is more volatile than the other, or has more affinity to caloric, are submitted to distillation, our intention is to separate them from each other: The more volatile substance a.s.sumes the form of gas, and is afterwards condensed by refrigeration in proper vessels. In this case distillation, like evaporation, becomes a species of mechanical operation, which separates two substances from each other without decomposing or altering the nature of either. In evaporation, our only object is to preserve the fixed body, without paying any regard to the volatile matter; whereas, in distillation, our princ.i.p.al attention is generally paid to the volatile substance, unless when we intend to preserve both the one and the other. Hence, simple distillation is nothing more than evaporation produced in close vessels.

The most simple distilling vessel is a species of bottle or matra.s.s, A, Pl. III. Fig. 8. which has been bent from its original form BC to BD, and which is then called a retort; when used, it is placed either in a reverberatory furnace, Pl. XIII. Fig. 2. or in a sand bath under a dome of baked earth, Pl. III. Fig. 1. To receive and condense the products, we adapt a recipient, E, Pl. III. Fig. 9. which is luted to the retort.

Sometimes, more especially in pharmaceutical operations, the gla.s.s or stone ware cucurbit, A, with its capital B, Pl. III. Fig. 12, or the gla.s.s alembic and capital, Fig. 13. of one piece, is employed. This latter is managed by means of a tubulated opening T, fitted with a ground stopper of cristal; the capital, both of the cucurbit and alembic, has a furrow or trench, r r, intended for conveying the condensed liquor into the beak RS, by which it runs out. As, in almost all distillations, expansive vapours are produced, which might burst the vessels employed, we are under the necessity of having a small hole, T, Fig. 9. in the balloon or recipient, through which these may find vent; hence, in this way of distilling, all the products which are permanently aeriform are entirely lost, and even such as difficultly lose that state have not sufficient s.p.a.ce to condense in the balloon: This apparatus is not, therefore, proper for experiments of investigation, and can only be admitted in the ordinary operations of the laboratory or in pharmacy. In the article appropriated for compound distillation, I shall explain the various methods which have been contrived for preserving the whole products from bodies in this process.

As gla.s.s or earthen vessels are very brittle, and do not readily bear sudden alterations of heat and cold, every well regulated laboratory ought to have one or more alembics of metal for distilling water, spiritous liquors, essential oils, &c. This apparatus consists of a cucurbit and capital of tinned copper or bra.s.s, Pl. III. Fig. 15. and 16. which, when judged proper, may be placed in the water bath, D, Fig.

17. In distillations, especially of spiritous liquors, the capital must be furnished with a refrigetory, SS, Fig. 16. kept continually filled with cold water; when the water becomes heated, it is let off by the stop-c.o.c.k, R, and renewed with a fresh supply of cold water. As the fluid distilled is converted into gas by means of caloric furnished by the fire of the furnace, it is evident that it could not condense, and, consequently, that no distillation, properly speaking, could take place, unless it is made to deposit in the capital all the caloric it received in the cucurbit; with this view, the sides of the capital must always be preserved at a lower temperature than is necessary for keeping the distilling substance in the state of gas, and the water in the refrigetory is intended for this purpose. Water is converted into gas by the temperature of 80 (212), alkohol by 67 (182.75), ether by 32 (104); hence these substances cannot be distilled, or, rather, they will fly off in the state of gas, unless the temperature of the refrigetory be kept under these respective degrees.

In the distillation of spiritous, and other expansive liquors, the above described refrigetory is not sufficient for condensing all the vapours which arise; in this case, therefore, instead of receiving the distilled liquor immediately from the beak, TU, of the capital into a recipient, a worm is interposed between them. This instrument is represented Pl. III.

Fig. 18. contained in a worm tub of tinned copper, it consists of a metallic tube bent into a considerable number of spiral revolutions. The vessel which contains the worm is kept full of cold water, which is renewed as it grows warm. This contrivance is employed in all distilleries of spirits, without the intervention of a capital and refrigetory, properly so called. The one represented in the plate is furnished with two worms, one of them being particularly appropriated to distillations of odoriferous substances.

In some simple distillations it is necessary to interpose an adopter between the retort and receiver, as shown Pl. III. Fig, 11. This may serve two different purposes, either to separate two products of different degrees of volatility, or to remove the receiver to a greater distance from the furnace, that it may be less heated. But these, and several other more complicated instruments of ancient contrivance, are far from producing the accuracy requisite in modern chemistry, as will be readily perceived when I come to treat of compound distillation.

SECT. VI.

_Of Sublimation._

This term is applied to the distillation of substances which condense in a concrete or solid form, such as the sublimation of sulphur, and of muriat of ammoniac, or sal ammoniac. These operations may be conveniently performed in the ordinary distilling vessels already described, though, in the sublimation of sulphur, a species of vessels, named Alludels, have been usually employed. These are vessels of stone or porcelain ware, which adjust to each other over a cucurbit containing the sulphur to be sublimed. One of the best subliming vessels, for substances which are not very volatile, is a flask, or phial of gla.s.s, sunk about two thirds into a sand bath; but in this way we are apt to lose a part of the products. When these are wished to be entirely preserved, we must have recourse to the pneumato-chemical distilling apparatus, to be described in the following chapter.

CHAP. VI.

_Of Pneumato-chemical Distillations, Metallic Dissolutions, and some other operations which require very complicated instruments._

SECT. I.

_Of Compound and Pneumato-chemical Distillations._

In the preceding chapter, I have only treated of distillation as a simple operation, by which two substances, differing in degrees of volatility, may be separated from each other; but distillation often actually decomposes the substances submitted to its action, and becomes one of the most complicated operations in chemistry. In every distillation, the substance distilled must be brought to the state of gas, in the cucurbit or retort, by combination with caloric: In simple distillation, this caloric is given out in the refrigeratory or in the worm, and the substance again recovers its liquid or solid form, but the substances submitted to compound distillation are absolutely decompounded; one part, as for instance the charcoal they contain, remains fixed in the retort, and all the rest of the elements are reduced to ga.s.ses of different kinds. Some of these are susceptible of being condensed, and of recovering their solid or liquid forms, whilst others are permanently aeriform; one part of these are absorbable by water, some by the alkalies, and others are not susceptible of being absorbed at all. An ordinary distilling apparatus, such as has been described in the preceding chapter, is quite insufficient for retaining or for separating these diversified products, and we are obliged to have recourse, for this purpose, to methods of a more complicated nature.

The apparatus I am about to describe is calculated for the most complicated distillations, and may be simplified according to circ.u.mstances. It consists of a tubulated gla.s.s retort A, Pl. IV. Fig.

1. having its beak fitted to a tubulated balloon or recipient BC; to the upper orifice D of the balloon a bent tube DEfg is adjusted, which, at its other extremity g, is plunged into the liquor contained in the bottle L, with three necks x.x.x. Three other similar bottles are connected with this first one, by means of three similar bent tubes disposed in the same manner; and the farthest neck of the last bottle is connected with a jar in a pneumato-chemical apparatus, by means of a bent tube[60]. A determinate weight of distilled water is usually put into the first bottle, and the other three have each a solution of caustic potash in water. The weight of all these bottles, and of the water and alkaline solution they contain, must be accurately ascertained. Every thing being thus disposed, the junctures between the retort and recipient, and of the tube D of the latter, must be luted with fat lute, covered over with slips of linen, spread with lime and white of egg; all the other junctures are to be secured by a lute made of wax and rosin melted together.

When all these dispositions are completed, and when, by means of heat applied to the retort A, the substance it contains becomes decomposed, it is evident that the least volatile products must condense or sublime in the beak or neck of the retort itself, where most of the concrete substances will fix themselves. The more volatile substances, as the lighter oils, ammoniac, and several others, will condense in the recipient GC, whilst the ga.s.ses, which are not susceptible of condensation by cold, will pa.s.s on by the tubes, and boil up through the liquors in the several bottles. Such as are absorbable by water will remain in the first bottle, and those which caustic alkali can absorb will remain in the others; whilst such ga.s.ses as are not susceptible of absorption, either by water or alkalies, will escape by the tube RM, at the end of which they may be received into jars in a pneumato-chemical apparatus. The charcoal and fixed earth, &c. which form the substance or residuum, anciently called _caput mortuum_, remain behind in the retort.

In this manner of operating, we have always a very material proof of the accuracy of the a.n.a.lysis, as the whole weights of the products taken together, after the process is finished, must be exactly equal to the weight of the original substance submitted to distillation. Hence, for instance, if we have operated upon eight ounces of starch or gum arabic, the weight of the charry residuum in the retort, together with that of all the products gathered in its neck and the balloon, and of all the gas received into the jars by the tube RM added to the additional weight acquired by the bottles, must, when taken together, be exactly eight ounces. If the product be less or more, it proceeds from error, and the experiment must be repeated until a satisfactory result be procured, which ought not to differ more than six or eight grains in the pound from the weight of the substance submitted to experiment.

In experiments of this kind, I for a long time met with an almost insurmountable difficulty, which must at last have obliged me to desist altogether, but for a very simple method of avoiding it, pointed out to me by Mr Ha.s.senfratz. The smallest diminution in the heat of the furnace, and many other circ.u.mstances inseparable from this kind of experiments, cause frequent reabsorptions of gas; the water in the cistern of the pneumato-chemical apparatus rushes into the last bottle through the tube RM, the same circ.u.mstance happens from one bottle into another, and the fluid is often forced even into the recipient C. This accident is prevented by using bottles having three necks, as represented in the plate, into one of which, in each bottle, a capillary gla.s.s-tube St, st, st, st, is adapted, so as to have its lower extremity t immersed in the liquor. If any absorption takes place, either in the retort, or in any of the bottles, a sufficient quant.i.ty of external air enters, by means of these tubes, to fill up the void; and we get rid of the inconvenience at the price of having a small mixture of common air with the products of the experiment, which is thereby prevented from failing altogether. Though these tubes admit the external air, they cannot permit any of the ga.s.seous substances to escape, as they are always shut below by the water of the bottles.

It is evident that, in the course of experiments with this apparatus, the liquor of the bottles must rise in these tubes in proportion to the pressure sustained by the gas or air contained in the bottles; and this pressure is determined by the height and gravity of the column of fluid contained in all the subsequent bottles. If we suppose that each bottle contains three inches of fluid, and that there are three inches of water in the cistern of the connected apparatus above the orifice of the tube RM, and allowing the gravity of the fluids to be only equal to that of water, it follows that the air in the first bottle must sustain a pressure equal to twelve inches of water; the water must therefore rise twelve inches in the tube S, connected with the first bottle, nine inches in that belonging to the second, six inches in the third, and three in the last; wherefore these tubes must be made somewhat more than twelve, nine, six, and three inches long respectively, allowance being made for oscillatory motions, which often take place in the liquids. It is sometimes necessary to introduce a similar tube between the retort and recipient; and, as the tube is not immersed in fluid at its lower extremity, until some has collected in the progress of the distillation, its upper end must be shut at first with a little lute, so as to be opened according to necessity, or after there is sufficient liquid in the recipient to secure its lower extremity.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Hero of Darkness

Hero of Darkness

Hero of Darkness Chapter 1096 Hope at Happiness Author(s) : CrimsonWolfAuthor View : 1,105,097
Kuma Kuma Kuma Bear

Kuma Kuma Kuma Bear

Kuma Kuma Kuma Bear Chapter 741 Author(s) : くまなの, Kumanano View : 2,744,852
Divine Emperor of Death

Divine Emperor of Death

Divine Emperor of Death Chapter 4146 No Time? Author(s) : Stardust_breaker View : 4,076,823
Legend of Swordsman

Legend of Swordsman

Legend of Swordsman Chapter 6455 Nothing Wrong Author(s) : 打死都要钱, Mr. Money View : 10,411,375

Elements of Chemistry Part 29 summary

You're reading Elements of Chemistry. This manga has been translated by Updating. Author(s): Antoine Lavoisier. Already has 666 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com