Home

Discourses: Biological & Geological Part 14

Discourses: Biological & Geological - novelonlinefull.com

You’re read light novel Discourses: Biological & Geological Part 14 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[Footnote 11: _etudes sur les Maladies actuelles des Vers a Soie_, p.

53.]

The Italian naturalist, Filippi, discovered in the blood of the silkworms affected by this strange disorder a mult.i.tude of cylindrical corpuscles, each about 1/6000th of an inch long. These have been carefully studied by Lebert, and named by him _Panhistophyton_; for the reason that in subjects in which the disease is strongly developed, the corpuscles swarm in every tissue and organ of the body, and even pa.s.s into the undeveloped eggs of the female moth. But are these corpuscles causes, or mere concomitants, of the disease? Some naturalists took one view and some another; and it was not until the French Government, alarmed by the continued ravages of the malady, and the inefficiency of the remedies which had been suggested, despatched M. Pasteur to study it, that the question received its final settlement; at a great sacrifice, not only of the time and peace of mind of that eminent philosopher, but, I regret to have to add, of his health.

But the sacrifice has not been in vain. It is now certain that this devastating, cholera-like, Pebrine, is the effect of the growth and multiplication of the _Panhistophyton_ in the silkworm. It is contagious and infectious, because the corpuscles of the _Panhistophyton_ pa.s.s away from the bodies of the diseased caterpillars, directly or indirectly, to the alimentary ca.n.a.l of healthy silkworms in their neighbourhood; it is hereditary because the corpuscles enter into the eggs while they are being formed, and consequently are carried within them when they are laid; and for this reason, also, it presents the very singular peculiarity of being inherited only on the mother's side. There is not a single one of all the apparently capricious and unaccountable phenomena presented by the Pebrine, but has received its explanation from the fact that the disease is the result of the presence of the microscopic organism, _Panhistophyton_.

Such being the facts with respect to the Pebrine, what are the indications as to the method of preventing it? It is obvious that this depends upon the way in which the _Panhistophyton_ is generated. If it may be generated by Abiogenesis, or by Xenogenesis, within the silkworm or its moth, the extirpation of the disease must depend upon the prevention of the occurrence of the conditions under which this generation takes place. But if, on the other hand, the _Panhistophyton_ is an independent organism, which is no more generated by the silkworm than the mistletoe is generated by the apple-tree or the oak on which it grows, though it may need the silkworm for its development in the same way as the mistletoe needs the tree, then the indications are totally different. The sole thing to be done is to get rid of and keep away the germs of the _Panhistophyton_. As might be imagined, from the course of his previous investigations, M. Pasteur was led to believe that the latter was the right theory; and, guided by that theory, he has devised a method of extirpating the disease, which has proved to be completely successful wherever it has been properly carried out.

There can be no reason, then, for doubting that, among insects, contagious and infectious diseases, of great malignity, are caused by minute organisms which are produced from pre-existing germs, or by h.o.m.ogenesis; and there is no reason, that I know of, for believing that what happens in insects may not take place in the highest animals.

Indeed, there is already strong evidence that some diseases of an extremely malignant and fatal character to which man is subject, are as much the work of minute organisms as is the Pebrine. I refer for this evidence to the very striking facts adduced by Professor Lister in his various well-known publications on the antiseptic method of treatment. It appears to me impossible to rise from the perusal of those publications without a strong conviction that the lamentable mortality which so frequently dogs the footsteps of the most skilful operator, and those deadly consequences of wounds and injuries which seem to haunt the very walls of great hospitals, and are, even now, destroying more men than die of bullet or bayonet, are due to the importation of minute organisms into wounds, and their increase and multiplication; and that the surgeon who saves most lives will be he who best works out the practical consequences of the hypothesis of Redi.

I commenced this Address by asking you to follow me in an attempt to trace the path which has been followed by a scientific idea, in its long and slow progress from the position of a probable hypothesis to that of an established law of nature. Our survey has not taken us into very attractive regions; it has lain, chiefly, in a land flowing with the abominable, and peopled with mere grubs and mouldiness. And it may be imagined with what smiles and shrugs, practical and serious contemporaries of Redi and of Spallanzani may have commented on the waste of their high abilities in toiling at the solution of problems which, though curious enough in themselves, could be of no conceivable utility to mankind.

Nevertheless, you will have observed that before we had travelled very far upon our road, there appeared, on the right hand and on the left, fields laden with a harvest of golden grain, immediately convertible into those things which the most solidly practical men will admit to have value--viz., money and life.

The direct loss to France caused by the Pebrine in seventeen years cannot be estimated at less than fifty millions sterling; and if we add to this what Redi's idea, in Pasteur's hands, has done for the wine-grower and for the vinegar-maker, and try to capitalise its value, we shall find that it will go a long way towards repairing the money losses caused by the frightful and calamitous war of this autumn. And as to the equivalent of Redi's thought in life, how can we over-estimate the value of that knowledge of the nature of epidemic and epizootic diseases, and consequently of the means of checking, or eradicating them, the dawn of which has a.s.suredly commenced?

Looking back no further than ten years, it is possible to select three (1863, 1864, and 1869) in which the total number of deaths from scarlet- fever alone amounted to ninety thousand. That is the return of killed, the maimed and disabled being left out of sight. Why, it is to be hoped that the list of killed in the present bloodiest of all wars will not amount to more than this! But the facts which I have placed before you must leave the least sanguine without a doubt that the nature and the causes of this scourge will, one day, be as well understood as those of the Pebrine are now; and that the long-suffered ma.s.sacre of our innocents will come to an end.

And thus mankind will have one more admonition that "the people perish for lack of knowledge"; and that the alleviation of the miseries, and the promotion of the welfare, of men must be sought, by those who will not lose their pains, in that diligent, patient, loving study of all the mult.i.tudinous aspects of Nature, the results of which const.i.tute exact knowledge, or Science. It is the justification and the glory of this great meeting that it is gathered together for no other object than the advancement of the moiety of science which deals with those phenomena of nature which we call physical. May its endeavours be crowned with a full measure of success!

IX

GEOLOGICAL CONTEMPORANEITY AND PERSISTENT TYPES OF LIFE

[1862]

Merchants occasionally go through a wholesome, though troublesome and not always satisfactory, process which they term "taking stock." After all the excitement of speculation, the pleasure of gain, and the pain of loss, the trader makes up his mind to face facts and to learn the exact quant.i.ty and quality of his solid and reliable possessions.

The man of science does well sometimes to imitate this procedure; and, forgetting for the time the importance of his own small winnings, to re- examine the common stock in trade, so that he may make sure how far the stock of bullion in the cellar--on the faith of whose existence so much paper has been circulating--is really the solid gold of truth.

The Anniversary Meeting of the Geological Society seems to be an occasion well suited for an undertaking of this kind--for an inquiry, in fact, into the nature and value of the present results of palaeontological investigation; and the more so, as all those who have paid close attention to the late mult.i.tudinous discussions in which palaeontology is implicated, must have felt the urgent necessity of some such scrutiny.

First in order, as the most definite and unquestionable of all the results of palaeontology, must be mentioned the immense extension and impulse given to botany, zoology, and comparative anatomy, by the investigation of fossil remains. Indeed, the ma.s.s of biological facts has been so greatly increased, and the range of biological speculation has been so vastly widened, by the researches of the geologist and palaeontologist, that it is to be feared there are naturalists in existence who look upon geology as Brindley regarded rivers. "Rivers,"

said the great engineer, "were made to feed ca.n.a.ls;" and geology, some seem to think, was solely created to advance comparative anatomy.

Were such a thought justifiable, it could hardly expect to be received with favour by this a.s.sembly. But it is not justifiable. Your favourite science has her own great aims independent of all others; and if, notwithstanding her steady devotion to her own progress, she can scatter such rich alms among her sisters, it should be remembered that her charity is of the sort that does not impoverish, but "blesseth him that gives and him that takes."

Regard the matter as we will, however, the facts remain. Nearly 40,000 species of animals and plants have been added to the Systema Naturae by palaeontological research. This is a living population equivalent to that of a new continent in mere number; equivalent to that of a new hemisphere, if we take into account the small population of insects as yet found fossil, and the large proportion and peculiar organisation of many of the Vertebrata.

But, beyond this, it is perhaps not too much to say that, except for the necessity of interpreting palaeontological facts, the laws of distribution would have received less careful study; while few comparative anatomists (and those not of the first order) would have been induced by mere love of detail, as such, to study the minutiae of osteology, were it not that in such minutiae lie the only keys to the most interesting riddles offered by the extinct animal world.

These a.s.suredly are great and solid gains. Surely it is matter for no small congratulation that in half a century (for palaeontology, though it dawned earlier, came into full day only with Cuvier) a subordinate branch of biology should have doubled the value and the interest of the whole group of sciences to which it belongs.

But this is not all. Allied with geology, palaeontology has established two laws of inestimable importance: the first, that one and the same area of the earth's surface has been successively occupied by very different kinds of living beings; the second, that the order of succession established in one locality holds good, approximately, in all.

The first of these laws is universal and irreversible; the second is an induction from a vast number of observations, though it may possibly, and even probably, have to admit of exceptions. As a consequence of the second law, it follows that a peculiar relation frequently subsists between series of strata containing organic remains, in different localities. The series resemble one another not only in virtue of a general resemblance of the organic remains in the two, but also in virtue of a resemblance in the order and character of the serial succession in each. There is a resemblance of arrangement; so that the separate terms of each series, as well as the whole series, exhibit a correspondence.

Succession implies time; the lower members of an undisturbed series of sedimentary rocks are certainly older than the upper; and when the notion of age was once introduced as the equivalent of succession, it was no wonder that correspondence in succession came to be looked upon as a correspondence in age, or "contemporaneity." And, indeed, so long as relative age only is spoken of, correspondence in succession _is_ correspondence in age; it is _relative_ contemporaneity.

But it would have been very much better for geology if so loose and ambiguous a word as "contemporaneous" had been excluded from her terminology, and if, in its stead, some term expressing similarity of serial relation, and excluding the notion of time altogether, had been employed to denote correspondence in position in two or more series of strata.

In anatomy, where such correspondence of position has constantly to be spoken of, it is denoted by the word "h.o.m.ology" and its derivatives; and for Geology (which after all is only the anatomy and physiology of the earth) it might be well to invent some single word, such as "h.o.m.otaxis"

(similarity of order), in order to express an essentially similar idea.

This, however, has not been done, and most probably the inquiry will at once be made--To what end burden science with a new and strange term in place of one old, familiar, and part of our common language?

The reply to this question will become obvious as the inquiry into the results of palaeontology is pushed further.

Those whose business it is to acquaint themselves specially with the works of palaeontologists, in fact, will be fully aware that very few, if any, would rest satisfied with such a statement of the conclusions of their branch of biology as that which has just been given.

Our standard repertories of palaeontology profess to teach us far higher things--to disclose the entire succession of living forms upon the surface of the globe; to tell us of a wholly different distribution of climatic conditions in ancient times; to reveal the character of the first of all living existences; and to trace out the law of progress from them to us.

It may not be unprofitable to bestow on these professions a somewhat more critical examination than they have hitherto received, in order to ascertain how far they rest on an irrefragable basis; or whether, after all, it might not be well for palaeontologists to learn a little more carefully that scientific "ars artium," the art of saying "I don't know."

And to this end let us define somewhat more exactly the extent of these pretensions of palaeontology.

Every one is aware that Professor Bronn's "Untersuchungen" and Professor Pictet's "Traite de Paleontologie" are works of standard authority, familiarly consulted by every working palaeontologist. It is desirable to speak of these excellent books, and of their distinguished authors, with the utmost respect, and in a tone as far as possible removed from carping criticism; indeed, if they are specially cited in this place, it is merely in justification of the a.s.sertion that the following propositions, which may be found implicitly, or explicitly, in the works in question, are regarded by the ma.s.s of palaeontologists and geologists, not only on the Continent but in this country, as expressing some of the best- established results of palaeontology. Thus:--

Animals and plants began their existence together, not long after the commencement of the deposition of the sedimentary rocks; and then succeeded one another, in such a manner, that totally distinct faunae and florae occupied the whole surface of the earth, one after the other, and during distinct epochs of time.

A geological formation is the sum of all the strata deposited over the whole surface of the earth during one of these epochs: a geological fauna or flora is the sum of all the species of animals or plants which occupied the whole surface of the globe, during one of these epochs.

The population of the earth's surface was at first very similar in all parts, and only from the middle of the Tertiary epoch onwards, began to show a distinct distribution in zones.

The const.i.tution of the original population, as well as the numerical proportions of its members, indicates a warmer and, on the whole, somewhat tropical climate, which remained tolerably equable throughout the year. The subsequent distribution of living beings in zones is the result of a gradual lowering of the general temperature, which first began to be felt at the poles.

It is not now proposed to inquire whether these doctrines are true or false; but to direct your attention to a much simpler though very essential preliminary question--What is their logical basis? what are the fundamental a.s.sumptions upon which they all logically depend? and what is the evidence on which those fundamental propositions demand our a.s.sent?

These a.s.sumptions are two: the first, that the commencement of the geological record is coeval with the commencement of life on the globe; the second, that geological contemporaneity is the same thing as chronological synchrony. Without the first of these a.s.sumptions there would of course be no ground for any statement respecting the commencement of life; without the second, all the other statements cited, every one of which implies a knowledge of the state of different parts of the earth at one and the same time, will be no less devoid of demonstration.

The first a.s.sumption obviously rests entirely on negative evidence. This is, of course, the only evidence that ever can be available to prove the commencement of any series of phenomena; but, at the same time, it must be recollected that the value of negative evidence depends entirely on the amount of positive corroboration it receives. If A.B. wishes to prove an _alibi_, it is of no use for him to get a thousand witnesses simply to swear that they did not see him in such and such a place, unless the witnesses are prepared to prove that they must have seen him had he been there. But the evidence that animal life commenced with the Lingula- flags, _e.g._, would seem to be exactly of this unsatisfactory uncorroborated sort. The Cambrian witnesses simply swear they "haven't seen anybody their way"; upon which the counsel for the other side immediately puts in ten or twelve thousand feet of Devonian sandstones to make oath they never saw a fish or a mollusk, though all the world knows there were plenty in their time.

But then it is urged that, though the Devonian rocks in one part of the world exhibit no fossils, in another they do, while the lower Cambrian rocks nowhere exhibit fossils, and hence no living being could have existed in their epoch.

To this there are two replies: the first that the observational basis of the a.s.sertion that the lowest rocks are nowhere fossiliferous is an amazingly small one, seeing how very small an area, in comparison to that of the whole world, has yet been fully searched; the second, that the argument is good for nothing unless the unfossiliferous rocks in question were not only _contemporaneous_ in the geological sense, but _synchronous_ in the chronological sense. To use the _alibi_ ill.u.s.tration again. If a man wishes to prove he was in neither of two places, A and B, on a given day, his witnesses for each place must be prepared to answer for the whole day. If they can only prove that he was not at A in the morning, and not at B in the afternoon, the evidence of his absence from both is nil, because he might have been at B in the morning and at A in the afternoon.

Thus everything depends upon the validity of the second a.s.sumption. And we must proceed to inquire what is the real meaning of the word "contemporaneous" as employed by geologists. To this end a concrete example may be taken.

The Lias of England and the Lias of Germany, the Cretaceous rocks of Britain and the Cretaceous rocks of Southern India, are termed by geologists "contemporaneous" formations; but whenever any thoughtful geologist is asked whether he means to say that they were deposited synchronously, he says, "No,--only within the same great epoch." And if, in pursuing the inquiry, he is asked what may be the approximate value in time of a "great epoch"--whether it means a hundred years, or a thousand, or a million, or ten million years--his reply is, "I cannot tell."

If the further question be put, whether physical geology is in possession of any method by which the actual synchrony (or the reverse) of any two distant deposits can be ascertained, no such method can be heard of; it being admitted by all the best authorities that neither similarity of mineral composition, nor of physical character, nor even direct continuity of stratum, are _absolute_ proofs of the synchronism of even approximated sedimentary strata: while, for distant deposits, there seems to be no kind of physical evidence attainable of a nature competent to decide whether such deposits were formed simultaneously, or whether they possess any given difference of antiquity. To return to an example already given: All competent authorities will probably a.s.sent to the proposition that physical geology does not enable us in any way to reply to this question--Were the British Cretaceous rocks deposited at the same time as those of India, or are they a million of years younger or a million of years older?

Is palaeontology able to succeed where physical geology fails? Standard writers on palaeontology, as has been seen, a.s.sume that she can. They take it for granted, that deposits containing similar organic remains are synchronous--at any rate in a broad sense; and yet, those who will study the eleventh and twelfth chapters of Sir Henry De La Beche's remarkable "Researches in Theoretical Geology," published now nearly thirty years ago, and will carry out the arguments there most luminously stated, to their logical consequences, may very easily convince themselves that even absolute ident.i.ty of organic contents is no proof of the synchrony of deposits, while absolute diversity is no proof of difference of date. Sir Henry De La Beche goes even further, and adduces conclusive evidence to show that the different parts of one and the same stratum, having a similar composition throughout, containing the same organic remains, and having similar beds above and below it, may yet differ to any conceivable extent in age.

Edward Forbes was in the habit of a.s.serting that the similarity of the organic contents of distant formations was _prima facie_ evidence, not of their similarity, but of their difference of age; and holding as he did the doctrine of single specific centres, the conclusion was as legitimate as any other; for the two districts must have been occupied by migration from one of the two, or from an intermediate spot, and the chances against exact coincidence of migration and of imbedding are infinite.

In point of fact, however, whether the hypothesis of single or of multiple specific centres be adopted, similarity of organic contents cannot possibly afford any proof of the synchrony of the deposits which contain them; on the contrary, it is demonstrably compatible with the lapse of the most prodigious intervals of time, and with the interposition of vast changes in the organic and inorganic worlds, between the epochs in which such deposits were formed.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Emperor’s Domination

Emperor’s Domination

Emperor’s Domination Chapter 6250: To Ashes Author(s) : Yan Bi Xiao Sheng,厌笔萧生 View : 18,019,534

Discourses: Biological & Geological Part 14 summary

You're reading Discourses: Biological & Geological. This manga has been translated by Updating. Author(s): Thomas Henry Huxley. Already has 586 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com