Home

Darwinism (1889) Part 23

Darwinism (1889) - novelonlinefull.com

You’re read light novel Darwinism (1889) Part 23 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[Footnote 127: _Notes of a Naturalist on the Challenger._]

[Footnote 128: _Descent of Man_, pp. 401, 402.]

[Footnote 129: _Coloration in Animals and Plants_, London, 1886.]

[Footnote 130: _Coloration of Animals_, Pl. X, p. 90; and Pls. II, III, and IV, pp. 30, 40, 42.]

[Footnote 131: See coloured Fig. in _Proc. Zool. Soc._, 1871, p. 626.]

[Footnote 132: A. Tylor's _Coloration_, p. 40; and Photograph in Hutchinson's _Ill.u.s.trations of Clinical Surgery_, quoted by Tylor.]

[Footnote 133: For activity and pugnacity of humming-birds, see _Tropical Nature_, pp. 130, 213.]

[Footnote 134: _Tropical Nature_, p. 209. In Chapter V of this work the views here advocated were first set forth, and the reader is referred there for further details.]

[Footnote 135: The Rev. O. Pickard-Cambridge, who has devoted himself to the study of spiders, has kindly sent me the following extract from a letter, written in 1869, in which he states his views on this question:--

"I myself doubt that particular application of the Darwinian theory which attributes male peculiarities of form, structure, colour, and ornament to female appetency or predilection. There is, it seems to me, undoubtedly something in the male organisation of a special, and s.e.xual nature, which, of its own vital force, develops the remarkable male peculiarities so commonly seen, and of no imaginable use to that s.e.x. In as far as these peculiarities show a great vital power, they point out to us the finest and strongest individuals of the s.e.x, and show us which of them would most certainly appropriate to themselves the best and greatest number of females, and leave behind them the strongest and greatest number of progeny. And here would come in, as it appears to me, the proper application of Darwin's theory of Natural Selection; for the possessors of greatest vital power being those most frequently produced and reproduced, the external signs of it would go on developing in an ever-increasing exaggeration, only to be checked where it became really detrimental in some respect or other to the individual."

This pa.s.sage, giving the independent views of a close observer--one, moreover, who has studied the species of an extensive group of animals both in the field and in the laboratory--very nearly accords with my own conclusions above given; and, so far as the matured opinions of a competent naturalist have any weight, afford them an important support.]

CHAPTER XI

THE SPECIAL COLOURS OF PLANTS: THEIR ORIGIN AND PURPOSE

The general colour relations of plants--Colours of fruits--The meaning of nuts--Edible or attractive fruits--The colours of flowers--Modes of securing cross-fertilisation--The interpretation of the facts--Summary of additional facts bearing on insect fertilisation--Fertilisation of flowers by birds--Self-fertilisation of flowers--Difficulties and contradictions--Intercrossing not necessarily advantageous--Supposed evil results of close interbreeding--How the struggle for existence acts among flowers--Flowers the product of insect agency--Concluding remarks on colour in nature.

The colours of plants are both less definite and less complex than are those of animals, and their interpretation on the principle of utility is, on the whole, more direct and more easy. Yet here, too, we find that in our investigation of the uses of the various colours of fruits and flowers, we are introduced to some of the most obscure recesses of nature's workshop, and are confronted with problems of the deepest interest and of the utmost complexity.

So much has been written on this interesting subject since Mr. Darwin first called attention to it, and its main facts have become so generally known by means of lectures, articles, and popular books, that I shall give here a mere outline sketch, for the purpose of leading up to a discussion of some of the more fundamental problems which arise out of the facts, and which have hitherto received less attention than they deserve.

_The General Colour Relations of Plants._

The green colour of the foliage of leafy plants is due to the existence of a substance called chlorophyll, which is almost universally developed in the leaves under the action of light. It is subject to definite chemical changes during the processes of growth and of decay, and it is owing to these changes that we have the delicate tints of spring foliage, and the more varied, intense, and gorgeous hues of autumn. But these all belong to the cla.s.s of intrinsic or normal colours, due to the chemical const.i.tution of the organism; as colours they are unadaptive, and appear to have no more relation to the wellbeing of the plants themselves than have the colours of gems and minerals. We may also include in the same category those algae and fungi which have bright colours--the "red snow" of the arctic regions, the red, green, or purple seaweeds, the brilliant scarlet, yellow, white, or black agarics, and other fungi. All these colours are probably the direct results of chemical composition or molecular structure, and, being thus normal products of the vegetable organism, need no special explanation from our present point of view; and the same remark will apply to the varied tints of the bark of trunks, branches, and twigs, which are often of various shades of brown and green, or even vivid reds or yellows.

There are, however, a few cases in which the need of protection, which we have found to be so important an agency in modifying the colours of animals, has also determined those of some of the smaller members of the vegetable kingdom. Dr. Burch.e.l.l found a mesembryanthomum in South Africa like a curiously shaped pebble, closely resembling the stones among which it grew;[136] and Mr. J.P. Mansel Weale states that in the same country one of the Asclepiadeae has tubers growing above ground among stones which they exactly resemble, and that, when not in leaf, they are for this reason quite invisible.[137] It is clear that such resemblances must be highly useful to these plants, inhabiting an arid country abounding in herbivorous mammalia, which, in times of drought or scarcity, will devour everything in the shape of a fleshy stem or tuber.

True mimicry is very rare in plants, though adaptation to like conditions often produces in foliage and habit a similarity that is deceiving. Euphorbias growing in deserts often closely resemble cacti.

Seaside plants and high alpine plants of different orders are often much alike; and innumerable resemblances of this kind are recorded in the names of plants, as Veronica epacridea (the veronica like an epacris), Limnanthemum nymphaeoides (the limnanthemum like a nymphaea), the resembling species in each case belonging to totally distinct families.

But in these cases, and in most others that have been observed, the essential features of true mimicry are absent, inasmuch as the one plant cannot be supposed to derive any benefit from its close resemblance to the other, and this is still more certain from the fact that the two species usually inhabit different localities. A few cases exist, however, in which there does seem to be the necessary accordance and utility. Mr. Mansel Weale mentions a l.a.b.i.ate plant (Ajuga ophrydis), the only species of the genus Ajuga in South Africa, which is strikingly like an orchid of the same country; while a balsam (Impatiens capensis), also a solitary species of the genus in that country, is equally like an orchid, growing in the same locality and visited by the same insects. As both these genera of plants are specialised for insect fertilisation, and both of the plants in question are isolated species of their respective genera, we may suppose that, when they first reached South Africa they were neglected by the insects of the country; but, being both remotely like orchids in form of flower, those varieties that approached nearest to the familiar species of the country were visited by insects and cross-fertilised, and thus a closer resemblance would at length be brought about. Another case of close general resemblance, is that of our common white dead-nettle (Lamium alb.u.m) to the stinging-nettle (Urtica dioica); and Sir John Lubbock thinks that this is a case of true mimicry, the dead-nettle being benefited by being mistaken by grazing animals for the stinging-nettle.[138]

_Colours of Fruits._

It is when we come to the essential parts of plants on which their perpetuation and distribution depends, that we find colour largely utilised for a distinct purpose in flowers and fruits. In the former we find attractive colours and guiding marks to secure cross-fertilisation by insects; in the latter attractive or protective coloration, the first to attract birds or other animals when the fruits are intended to be eaten, the second to enable them to escape being eaten when it would be injurious to the species. The colour phenomena of fruits being much the most simple will be considered first.

The perpetuation and therefore the very existence of each species of flowering plant depend upon its seeds being preserved from destruction and more or less effectually dispersed over a considerable area. The dispersal is effected either mechanically or by the agency of animals.

Mechanical dispersal is chiefly by means of air-currents, and large numbers of seeds are specially adapted to be so carried, either by being clothed with down or pappus, as in the well-known thistle and dandelion seeds; by having wings or other appendages, as in the sycamore, birch, and many other trees; by being thrown to a considerable distance by the splitting of the seed-vessel, and by many other curious devices.[139]

Very large numbers of seeds, however, are so small and light that they can be carried enormous distances by gales of wind, more especially as most of this kind are flattened or curved, so as to expose a large surface in proportion to their weight. Those which are carried by animals have their surfaces, or that of the seed-vessel, armed with minute hooks, or some p.r.i.c.kly covering which attaches itself to the hair of mammalia or the feathers of birds, as in the burdock, cleavers, and many other species. Others again are sticky, as in Plumbago europaea, mistletoe, and many foreign plants.

All the seeds or seed-vessels which are adapted to be dispersed in any of these ways are of dull protective tints, so that when they fall on the ground they are almost indistinguishable; besides which, they are usually small, hard, and altogether unattractive, never having any soft, juicy pulp; while the edible seeds often bear such a small proportion to the hard, dry envelopes or appendages, that few animals would care to eat them.

_The Meaning of Nuts._

There is, however, another cla.s.s of fruits or seeds, usually termed nuts, in which there is a large amount of edible matter, often very agreeable to the taste, and especially attractive and nourishing to a large number of animals. But when eaten, the seed is destroyed and the existence of the species endangered. It is evident, therefore, that it is by a kind of accident that these nuts are eatable; and that they are not intended to be eaten is shown by the special care nature seems to have taken to conceal or to protect them. We see that all our common nuts are green when on the tree, so as not easily to be distinguished from the leaves; but when ripe they turn brown, so that when they fall on to the ground they are equally indistinguishable among the dead leaves and twigs, or on the brown earth. Then they are almost always protected by hard coverings, as in hazel-nuts, which are concealed by the enlarged leafy involucre, and in the large tropical brazil-nuts and cocoa-nuts by such a hard and tough case as to be safe from almost every animal. Others have an external bitter rind, as in the walnut; while in the chestnuts and beech-nuts two or three fruits are enclosed in a p.r.i.c.kly involucre.

Notwithstanding all these precautions, nuts are largely devoured by mammalia and birds; but as they are chiefly the product of trees or shrubs of considerable longevity, and are generally produced in great profusion, the perpetuation of the species is not endangered. In some cases the devourers of nuts may aid in their dispersal, as they probably now and then swallow the seed whole, or not sufficiently crushed to prevent germination; while squirrels have been observed to bury nuts, many of which are forgotten and afterwards grow in places they could not have otherwise reached.[140] Nuts, especially the larger kinds which are so well protected by their hard, nearly globular cases, have their dispersal facilitated by rolling down hill, and more especially by floating in rivers and lakes, and thus reaching other localities. During the elevation of land areas this method would be very effective, as the new land would always be at a lower level than that already covered with vegetation, and therefore in the best position for being stocked with plants from it.

The other modes of dispersal of seeds are so clearly adapted to their special wants, that we feel sure they must have been acquired by the process of variation and natural selection. The hooked and sticky seeds are always those of such herbaceous plants as are likely, from their size, to come in contact with the wool of sheep or the hair of cattle; while seeds of this kind never occur on forest trees, on aquatic plants, or even on very dwarf creepers or trailers. The winged seed-vessels or seeds, on the other hand, mostly belong to trees and to tall shrubs or climbers. We have, therefore, a very exact adaptation to conditions in these different modes of dispersal; while, when we come to consider individual cases, we find innumerable other adaptations, some of which the reader will find described in the little work by Sir John Lubbock already referred to.

_Edible or Attractive Fruits._

It is, however, when we come to true fruits (in a popular sense) that we find varied colours evidently intended to attract animals, in order that the fruits may be eaten, while the seeds pa.s.s through the body undigested and are then in the fittest state for germination. This end has been gained in a great variety of ways, and with so many corresponding adaptations as to leave no doubt as to the value of the result. Fruits are pulpy or juicy, and usually sweet, and form the favourite food of innumerable birds and some mammals. They are always coloured so as to contrast with the foliage or surroundings, red being the most common as it is certainly the most conspicuous colour, but yellow, purple, black, or white being not uncommon. The edible portion of fruits is developed from different parts of the floral envelopes, or of the ovary, in the various orders and genera. Sometimes the calyx becomes enlarged and fleshy, as in the apple and pear tribe; more often the integuments of the ovary itself are enlarged, as in the plum, peach, grape, etc.; the receptacle is enlarged and forms the fruit of the strawberry; while the mulberry, pineapple, and fig are examples of compound fruits formed in various ways from a dense ma.s.s of flowers.

In all cases the seeds themselves are protected from injury by various devices. They are small and hard in the strawberry, raspberry, currant, etc., and are readily swallowed among the copious pulp. In the grape they are hard and bitter; in the rose (hip) disagreeably hairy; in the orange tribe very bitter; and all these have a smooth, glutinous exterior which facilitates their being swallowed. When the seeds are larger and are eatable, they are enclosed in an excessively hard and thick covering, as in the various kinds of "stone" fruit (plums, peaches, etc.), or in a very tough core, as in the apple. In the nutmeg of the Eastern Archipelago we have a curious adaptation to a single group of birds. The fruit is yellow, somewhat like an oval peach, but firm and hardly eatable. This splits open and shows the glossy black covering of the seed or nutmeg, over which spreads the bright scarlet arillus or "mace," an advent.i.tious growth of no use to the plant except to attract attention. Large fruit pigeons pluck out this seed and swallow it entire for the sake of the mace, while the large nutmeg pa.s.ses through their bodies and germinates; and this has led to the wide distribution of wild nutmegs over New Guinea and the surrounding islands.

In the restriction of bright colour to those edible fruits the eating of which is beneficial to the plant, we see the undoubted result of natural selection; and this is the more evident when we find that the colour never appears till the fruit is ripe--that is, till the seeds within it are fully matured and in the best state for germination. Some brilliantly coloured fruits are poisonous, as in our bitter-sweet (Solanum dulcamara), cuckoo-pint (Arum) and the West Indian manchineel.

Many of these are, no doubt, eaten by animals to whom they are harmless; and it has been suggested that even if some animals are poisoned by them the plant is benefited, since it not only gets dispersed, but finds, in the decaying body of its victim, a rich manure heap.[141] The particular colours of fruits are not, so far as we know, of any use to them other than as regards conspicuousness, hence a tendency to _any_ decided colour has been preserved and acc.u.mulated as serving to render the fruit easily visible among its surroundings of leaves or herbage. Out of 134 fruit-bearing plants in Mongredien's _Trees and Shrubs_, and Hooker's _British Flora_, the fruits of no less than sixty-eight, or rather more than half, are red, forty-five are black, fourteen yellow, and seven white. The great prevalence of red fruits is almost certainly due to their greater conspicuousness having favoured their dispersal, though it may also have arisen in part from the chemical changes of chlorophyll during ripening and decay producing red tints as in many fading leaves.

Yet the comparative scarcity of yellow in fruits, while it is the most common tint of fading leaves, is against this supposition.

There are, however, a few instances of coloured fruits which do not seem to be intended to be eaten; such are the colocynth plant (Cuc.u.mis colocynthus), which has a beautiful fruit the size and colour of an orange, but nauseous beyond description to the taste. It has a hard rind, and may perhaps be dispersed by being blown along the ground, the colour being an advent.i.tious product; but it is quite possible, notwithstanding its repulsiveness to us, that it may be eaten by some animals. With regard to the fruit of another plant, Calotropis procera, there is less doubt, as it is dry and full of thin, flat-winged seeds, with fine silky filaments, eminently adapted for wind-dispersal; yet it is of a bright yellow colour, as large as an apple, and therefore very conspicuous. Here, therefore, we seem to have colour which is a mere byproduct of the organism and of no use to it; but such cases are exceedingly rare, and this rarity, when compared with the great abundance of cases in which there is an obvious purpose in the colour, adds weight to the evidence in favour of the theory of the attractive coloration of edible fruits in order that birds and other animals may a.s.sist in their dispersal. Both the above-named plants are natives of Palestine and the adjacent arid countries.[142]

_The Colours of Flowers._

Flowers are much more varied in their colours than fruits, as they are more complex and more varied in form and structure; yet there is some parallelism between them in both respects. Flowers are frequently adapted to attract insects as fruits are to attract birds, the object being in the former to secure cross-fertilisation, in the latter dispersal; while just as colour is an index of the edibility of fruits which supply pulp or juice to birds, so are the colours of flowers an indication of the presence of nectar or of pollen which are devoured by insects.

The main facts and many of the details, as to the relation of insects to flowers, were discovered by Sprengel in 1793. He noticed the curious adaptation of the structure of many flowers to the particular insects which visit them; he proved that insects do cross-fertilise flowers, and he believed that this was the object of the adaptations, while the presence of nectar and pollen ensured the continuance of their visits; yet he missed discovering the _use_ of this cross-fertilisation. Several writers at a later period obtained evidence that cross-fertilisation of plants was a benefit to them; but the wide generality of this fact and its intimate connection with the numerous and curious adaptations discovered by Sprengel, was first shown by Mr. Darwin, and has since been demonstrated by a vast ma.s.s of observations, foremost among which are his own researches on orchids, primulas, and other plants.[143]

By an elaborate series of experiments carried on for many years Mr.

Darwin demonstrated the great value of cross-fertilisation in increasing the rapidity of growth, the strength and vigour of the plant, and in adding to its fertility. This effect is produced immediately, not as he expected would be the case, after several generations of crosses. He planted seeds from cross-fertilised and self-fertilised plants on two sides of the same pot exposed to exactly similar conditions, and in most cases the difference in size and vigour was amazing, while the plants from cross-fertilised parents also produced more and finer seeds. These experiments entirely confirmed the experience of breeders of animals already referred to (p. 160), and led him to enunciate his famous aphorism, "Nature abhors perpetual self-fertilisation".[144] In this principle we appear to have a sufficient reason for the various contrivances by which so many flowers secure cross-fertilisation, either constantly or occasionally. These contrivances are so numerous, so varied, and often so highly complex and extraordinary, that they have formed the subject of many elaborate treatises, and have also been amply popularised in lectures and handbooks. It will be unnecessary, therefore, to give details here, but the main facts will be summarised in order to call attention to some difficulties of the theory which seem to require further elucidation.

_Modes of securing Cross-Fertilisation._

When we examine the various modes in which the cross-fertilisation of flowers is brought about, we find that some are comparatively simple in their operation and needful adjustments, others highly complex. The simple methods belong to four princ.i.p.al cla.s.ses:--(1) By dichogamy--that is, by the anthers and the stigma becoming mature or in a fit state for fertilisation at slightly different times on the same plant. The result of this is that, as plants in different stations, on different soils, or exposed to different aspects flower earlier or later, the mature pollen of one plant can only fertilise some plant exposed to somewhat different conditions or of different const.i.tution, whose stigma will be mature at the same time; and this difference has been shown by Darwin to be that which is adapted to secure the fullest benefit of cross-fertilisation.

This occurs in Geranium pratense, Thymus serpyllum, Arum maculatum, and many others. (2) By the flower being self-sterile with its own pollen, as in the crimson flax. This absolutely prevents self-fertilisation. (3) By the stamens and anthers being so placed that the pollen cannot fall upon the stigma, while it does fall upon a visiting insect which carries it to the stigma of another flower. This effect is produced in a variety of very simple ways, and is often aided by the motion of the stamens which bend down out of the way of the stigmas before the pollen is ripe, as in Malva sylvestris (see Fig. 28). (4) By the male and female flowers being on different plants, forming the cla.s.s Dioecia of Linnaeus. In these cases the pollen may be carried to the stigmas either by the wind or by the agency of insects.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Eternal Sacred King

Eternal Sacred King

Eternal Sacred King Chapter 2947: Turning Into Ashes Author(s) : Snow-filled Bow Saber, 雪满弓刀 View : 5,308,824

Darwinism (1889) Part 23 summary

You're reading Darwinism (1889). This manga has been translated by Updating. Author(s): Alfred Russel Wallace. Already has 588 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com