Home

Catholic Churchmen in Science Part 2

Catholic Churchmen in Science - novelonlinefull.com

You’re read light novel Catholic Churchmen in Science Part 2 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

{44}

Let us, then, banish into the world of fiction that affirmation so long repeated by foolish credulity which made monasteries an asylum for indolence and incapacity, for misanthropy and pusillanimity, for feeble and melancholic temperaments, and for men who were no longer fit to serve society in the world. Monasteries were never intended to collect the invalids of the world. It was not the sick souls, but on the contrary the most vigorous and healthful the human race has ever produced, who presented themselves in crowds to fill them.--MONTALEMBERT, _Monks of the West_.

{45}

III.

BASIL VALENTINE, FOUNDER OF MODERN CHEMISTRY.

The Protestant tradition which presumes a priori that no good can possibly have come out of the Nazareth of the times before the Reformation, and especially the immediately preceding century, has served to obscure to an unfortunate degree the history of several hundred years extremely important in every department of education.

Strange as it may seem to those unfamiliar with the period, it is in that department which is supposed to be so typically modern the--physical sciences--that this neglect is most serious. Such a hold has this Protestant tradition on even educated minds that it is a source of great surprise to most people to be told that there were in many parts of Europe original observers in the physical sciences all during the thirteenth, fourteenth, and fifteenth centuries who were doing ground-breaking work of the highest value, work that was destined to mean much for the development of modern science.

Speculations and experiments with regard to the philosopher's stone and the trans.m.u.tation of metals are supposed to fill up all the interests of the alchemists of those days. As a matter of fact, however, men were making original observations of very {46} profound significance, and these were considered so valuable by their contemporaries that, though printing had not yet been invented, even the immense labor involved in copying large folio volumes by hand did not suffice to deter them from multiplying the writings of these men and thus preserving them for future generations, until the printing-press came to perpetuate them.

At the beginning of the twentieth century, with some of the supposed foundations of modern chemistry crumbling to pieces under the influences of the peculiarly active light thrown upon older chemical theories by the discovery of radium and the radio-active elements generally, there is a reawakening of interest in some of the old-time chemical observers whose work used to be laughed at as so unscientific and whose theory of the trans.m.u.tation of elements into one another was considered so absurd. The idea that it would be impossible under any circ.u.mstances to convert one element into another belongs entirely to the nineteenth century. Even so distinguished a mind as that of Newton, in the preceding century, could not bring itself to acknowledge the modern supposition of the absurdity of metallic transformation, but, on the contrary, believed very firmly in this as a basic chemical principle and confessed that it might be expected to occur at any time. He had seen specimens of gold ores in connexion with metallic copper, and had concluded that this was a manifestation of the natural transformation of one of these yellow metals into the other.

{47}

With the discovery that radium transforms itself into helium, and that indeed all the so-called radio-activities of the very heavy metals are probably due to a natural trans.m.u.tation process constantly at work, the ideas of the older chemists cease entirely to be a subject for amus.e.m.e.nt. The physical chemists of the present day are very ready to admit that the old teaching of the absolute independence of something over seventy elements is no longer tenable, except as a working hypothesis. The doctrine of matter and form taught for so many centuries by the scholastic philosophers which proclaimed that all matter is composed of two principles, an underlying material substratum and a dynamic or informing principle, has now more acknowledged verisimilitude, or lies at least closer to the generally accepted ideas of the most progressive scientists, than it has at any time for the last two or three centuries. Not only the great physicists, but also the great chemists, are speculating along lines that suggest the existence of but one form of matter, modified according to the energies that it possesses under a varying physical and chemical environment. This is, after all, only a restatement in modern terms of the teaching of St. Thomas of Aquin in the thirteenth century.

It is not surprising, then, that there should be a reawakening of interest in the lives of some of the men who, dominated by the earlier scholastic ideas and by the tradition of the possibility of finding the philosopher's stone, which would {48} trans.m.u.te the baser metals into the precious metals, devoted themselves with quite as much zeal as any modern chemist to the observation of chemical phenomena. One of the most interesting of these--indeed he might well be said to be the greatest of the alchemists--is the man whose only name that we know is that which appears on a series of ma.n.u.scripts written in the High German dialect of the end of the fifteenth and the beginning of the sixteenth century. That name is Basil Valentine, and the writer, according to the best historical traditions, was a Benedictine monk.

The name Basil Valentine may only have been a pseudonym, for it has been impossible to trace it among the records of the monasteries of the time. That the writer was a monk there seems to be no doubt, for his writings in ma.n.u.script and printed form began to have their vogue at a time when there was little likelihood of their being attributed to a monk unless an indubitable tradition connected them with some monastery.

This Basil Valentine (to accept the only name we have), as we can judge very well from his writings, eminently deserves the designation of the last of the alchemists and the first of the chemists. There is practically a universal recognition of the fact now that he deserves also the t.i.tle of Founder of Modern Chemistry, not only because of the value of the observations contained in his writings, but also because of the fact that they proved so suggestive to certain {49} scientific geniuses during the century succeeding Valentine's life. Almost more than to have added to the precious heritage of knowledge for mankind is it a boon for a scientific observer to have awakened the spirit of observation in others and to be the founder of a new school of thought. This Basil Valentine undoubtedly did.

Besides, his work furnishes evidence that the investigating spirit was abroad just when it is usually supposed not to have been, for the Thuringian monk surely did not do all his investigating alone, but must have received as well as given many a suggestion to his contemporaries.

In the history of education there are two commonplaces that are appealed to oftener than any other as the sources of material with regard to the influence of the Catholic Church on education during the centuries preceding the Reformation. These are the supposed idleness of the monks, and the foolish belief in the trans.m.u.tation of metals and the search for the philosopher's stone which dominated the minds of so many of the educated men of the time. It is in Germany especially that these two features of the pre-Reformation period are supposed to be best ill.u.s.trated. In recent years, however, there has come quite a revolution in the feelings even of those outside of the Church with regard to the proper appreciation of the work of the monastic scholars of these earlier centuries. Even though some of them did dream golden dreams over their alembics, the love of knowledge meant {50} more to them, as to the serious students of any age, than anything that might be made by it. As for their scientific beliefs, if there can be a conversion of one element into another, as seems true of radium, then the possibility of the trans.m.u.tation of metals is not so absurd as, for a century or more, it has seemed; and it is not impossible that at some time even gold may be manufactured out of other metallic materials.

Of course, a still worthier change of mind has come over the att.i.tude of educators because of the growing sense of appreciation for the wonderful work of the monks of the Middle Ages, and even of those centuries that are supposed to show least of the influence of these groups of men who, forgetting material progress, devoted themselves to the preservation and the cultivation of the things of the spirit. The impression that would consider the pre-Reformation monks in Germany as unworthy of their high calling in the great ma.s.s is almost entirely without foundation. Obscure though the lives of most of them were, many of them rose above their environment in such a way as to make their work landmarks in the history of progress for all time.

Because their discoveries are buried in the old Latin folios that are contained only in the best libraries, not often consulted by the modern scientist, it is usually thought that the scientific investigators of these centuries before the Reformation did no work that would be worth while considering in our present day. It is only some {51} one who goes into this matter as a labor of love who will consider it worth his while to take the trouble seriously to consult these musty old tomes. Many a scholar, however, has found his labor well rewarded by the discovery of many an antic.i.p.ation of modern science in these volumes so much neglected and where such treasure-trove is least expected. Professor Clifford Allb.u.t.t, the Regius Professor of physics at the University of Cambridge, in his address on "The Historical Relations of Medicine and Surgery Down to the End of the Sixteenth Century," which was delivered at the St.

Louis Congress of Arts and Sciences during the Exposition in 1904, has shown how much that is supposed to be distinctly modern in medicine, and above all in surgery, was the subject of discussion at the French and Italian universities of the thirteenth century. William Salicet, for instance, who taught at the University of Bologna, published a large series of case histories, subst.i.tuted the knife for the Arabic use of the cautery, described the danger of wounds of the neck, investigated the causes of the failure of healing by first intention, and sutured divided nerves. His pupil, Lanfranc, who taught later at the University of Paris, went farther than his master by distinguishing between venous and arterial hemorrhage, requiring digital compression for an hour to stop hemorrhage from the _venae pulsatiles_--the pulsating veins, as they were called--and if this failed because of the size of the vessel, {52} suggesting the application of a ligature. Lanfranc's chapter on injuries to the head still remains a noteworthy book in surgery that establishes beyond a doubt how thoughtfully practical were these teachers in the medieval universities. It must be remembered that at this time all the teachers in universities, even those in the medical schools as well as those occupied with surgery, were clerics. Professor Allb.u.t.t calls attention over and over again to this fact, because it emphasizes the thoroughness of educational methods, in spite of the supposed difficulties that would lie in the way of an exclusively clerical teaching staff.

In chemistry the advances made during the thirteenth, fourteenth, and fifteenth centuries were even more noteworthy than those in any other department of science. Albertus Magnus, who taught at Paris, wrote no less than sixteen treatises on chemical subjects, and, notwithstanding the fact that he was a theologian as well as a scientist and that his printed works filled sixteen folio volumes, he somehow found the time to make many observations for himself and performed numberless experiments in order to clear up doubts. The larger histories of chemistry accord him his proper place and hail him as a great founder in chemistry and a pioneer in original investigation.

Even St. Thomas of Aquin, much as he was occupied with theology and philosophy, found some time to devote to chemical questions. After {53} all, this is only what might have been expected of the favorite pupil of Albertus Magnus. Three treatises on chemical subjects from Aquinas's pen have been preserved for us, and it is to him that we are said to owe the origin of the word amalgam, which he first used in describing various chemical methods of metallic combination with mercury that were discovered in the search for the genuine trans.m.u.tation of metals.

Albertus Magnus's other great scientific pupil, Roger Bacon, the English Franciscan friar, followed more closely in the physical scientific ways of his great master. Altogether he wrote some eighteen treatises on chemical subjects. For a long time it was considered that he was the inventor of gunpowder, though this is now known to have been introduced into Europe by the Arabs. Roger Bacon studied gunpowder and various other explosive combinations in considerable detail, and it is for this reason that he obtained the undeserved reputation of being an original discoverer in this line. How well he realized how much might be accomplished by means of the energy stored up in explosives can perhaps be best appreciated from the fact that he suggested that boats would go along the rivers and across the seas without either sails or oars and that carriages would go along the streets without horse or man power. He considered that man would eventually invent a method of harnessing these explosive mixtures and of utilizing their energies for his purposes without {54} danger. It is curiously interesting to find, as we begin the twentieth century, and gasolene is so commonly used for the driving of automobiles and motor boats and is being introduced even on railroad cars in the West as the most available source of energy for suburban traffic, that this generation should only be fulfilling the idea of the old Franciscan friar of the thirteenth century, who prophesied that in explosives there was the secret of eventually manageable energy for transportation purposes.

Succeeding centuries were not as fruitful in great scientists as the thirteenth, and yet at the beginning of the fourteenth there was a pope, three of whose scientific treatises--one on the trans.m.u.tation of metals, which he considers an impossibility, at least as far as the manufacture of gold and silver was concerned; a treatise on diseases of the eyes, of which Professor Allb.u.t.t [Footnote 4] says that it was not without its distinctive practical value, though compiled so early in the history of eye surgery; and, finally, his treatise on the preservation of the health, written when he was himself over eighty years of age--are all considered by good authorities as worthy of the best scientific spirit of the time. This pope was John XXII, of whom it has been said over and over again by Protestant historians that he issued a bull forbidding chemistry, though he was himself one of the enthusiastic students of chemistry {55} in his younger years and always retained his interest in the science. [Footnote 5]

[Footnote 4: Address cited]

[Footnote 5: For the refutation of this calumny with regard to John XXII, see "Pope John XXII and the supposed Bull forbidding Chemistry," by James J. Walsh, Ph. D., LL. D., in the _Medical Library and Historical Journal_, October, 1905.]

During the fourteenth century Arnold of Villanova, the inventor of nitric acid, and the two Hollanduses kept up the tradition of original investigation in chemistry. Altogether there are some dozen treatises from these three men on chemical subjects. The Hollanduses particularly did their work in a spirit of thoroughly frank, original investigation. They were more interested in minerals than in any other cla.s.s of substances, but did not waste much time on the question of trans.m.u.tation of metals. Professor Thompson, the professor of chemistry at Edinburgh, said in his history of chemistry many years ago that the Hollanduses have very clear descriptions of their processes of treating minerals in investigating their composition, which serve to show that their knowledge was by no means entirely theoretical or acquired only from books or by argumentation.

Before the end of this fourteenth century, according to the best authorities on this subject, Basil Valentine, the more particular subject of our essay, was born.

Valentine's career is a typical example of the personally obscure but intellectually brilliant lives {56} which these old monks lived. It seems probable, according to the best authorities, as we have said, that his work began shortly before the middle of the fifteenth century, although most of what was important in it was accomplished during the second half. It would not be so surprising, as most people who have been brought up to consider the period just before the Reformation in Germany as wanting in progressive scholars might imagine, for a supremely great original investigator to have existed in North Germany about this time. After all, before the end of the century, Copernicus, the Pole, working in northern Germany, had announced his theory that the earth was not the center of the universe, and had set forth all that this announcement meant. To a bishop-friend who said to him, "But this means that you are giving us a new universe," he replied that the universe was already there, but his theory would lead men to recognize its existence. In southern Germany, Thomas a Kempis, who died in 1471, had traced for man the outlines of another universe, that of his own soul, from its mystically practical side. These great Germans were only the worthy contemporaries of many other German scholars scarcely less distinguished than these supreme geniuses. The second half of the fifteenth century, the beginning of the Renaissance in Germany as well as Italy, is that wonderful time in history when somehow men's eyes were opened to see farther and their minds broadened to gather in more of the truth of {57} man's relation to the universe, than had ever before been the case in all the centuries of human existence, or than has ever been possible even in these more modern centuries, though supposedly we are the heirs of all the ages in the foremost files of time.

Coming as he did before printing, when the spirit of tradition was even more rife and dominating than it has been since, it is almost needless to say that there are many curious legends a.s.sociated with the name of Basil Valentine. Two centuries before his time, Roger Bacon, doing his work in England, had succeeded in attracting so much attention even from the common people, because of his wonderful scientific discoveries, that his name became a by-word and many strange magical feats were attributed to him. Friar Bacon was the great wizard even in the plays of the Elizabethan period. A number of the same sort of myths attached themselves to the Benedictine monk of the fifteenth century. He was proclaimed in popular story to have been a wonderful magician. Even his ma.n.u.script, it was said, had not been published directly, but had been hidden in a pillar in the church attached to the monastery and had been discovered there after the splitting open of the pillar by a bolt of lightning from heaven. It is the extension of this tradition that has sometimes led to the a.s.sumption that Valentine lived in an earlier century, some even going so far as to say that he, too, like Roger Bacon, was a product of the {58} thirteenth century. It seems reasonably possible, however, to separate the traditional from what is actual in his existence, and thus to obtain some idea at least of his work, if not of the details of his life. The internal evidence from his works enable the historian of science to place him within a half century of the discovery of America.

One of the stories told with regard to Basil Valentine, because it has become a commonplace in philology, has made him more generally known than any of his actual discoveries. In one of the most popular of the old-fashioned text-books of chemistry in use a quarter of a century ago, in the chapter on Antimony, there was a story that I suppose students never forgot. It was said that Basil Valentine, a monk of the Middle Ages, was the discoverer of this substance. After having experimented with it in a number of ways, he threw some of it out of his laboratory one day, where the swine of the monastery, finding it, proceeded to gobble it up together with some other refuse. He watched the effect upon the swine very carefully, and found that, after a preliminary period of digestive disturbance, these swine developed an enormous appet.i.te and became fatter than any of the others. This seemed a rather desirable result, and Basil Valentine, ever on the search for the practical, thought that he might use the remedy to good purpose even on the members of the community.

Now, some of the monks in the monastery were of rather frail health and delicate const.i.tution, {59} and he thought that the putting on of a little fat in their case might be a good thing. Accordingly he administered, surrept.i.tiously, some of the salts of antimony, with which he was experimenting, in the food served to these monks. The result, however, was not so favorable as in the case of the hogs.

Indeed, according to one, though less authentic, version of the story, some of the poor monks, the unconscious subjects of the experiment, even perished as the result of the ingestion of the antimonial compounds. According to the better version they suffered only the usual unpleasant consequences of taking antimony, which are, however, quite enough for a fitting climax to the story. Basil Valentine called the new substance which he had discovered antimony, that is, opposed to monks. It might be good for hogs, but it was a form of monks' bane, as it were. [Footnote 6]

[Footnote 6: It is curious to trace how old are the traditions on which some of these old stories that must now be rejected, are founded. I have come upon the story with regard to Basil Valentine and the antimony and the monks in an old French medical encyclopedia of biography, published in the seventeenth century, and at that time there was no doubt at all expressed as to its truth. How much older than this it may be I do not know, though it is probable that it comes from the sixteenth century, when the _kakoethes scribendi_ attacked many people because of the facility of printing, and when most of the good stories that have so worried the modern dry-as-dust historian in his researches for their correction became a part of the body of supposed historical tradition.]

{60}

Unfortunately for most of the good stories of history, modern criticism has nearly always failed to find any authentic basis for them, and they have had to go the way of the legends of Washington's hatchet and Tell's apple. We are sorry to say that that seems to be true also of this particular story. Antimony, the word, is very probably derived from certain dialectic forms of the Greek word for the metal, and the name is no more derived from _anti_ and _monachus_ than it is from _anti_ and _monos_ (opposed to single existence), another fict.i.tious derivation that has been suggested, and one whose etymological value is supposed to consist in the fact that antimony is practically never found alone in nature.

Notwithstanding the apparent cloud of unfounded traditions that are a.s.sociated with his name, there can be no doubt at all of the fact that Valentinus--to give him the Latin name by which he is commonly designated in foreign literatures--was one of the great geniuses who, working in obscurity, make precious steps into the unknown that enable humanity after them to see things more clearly than ever before. There are definite historical grounds for placing Basil Valentine as the first of the series of careful observers who differentiated chemistry from the old alchemy and applied its precious treasures of information to the uses of medicine. It was because of the study of Basil Valentine's work that Paracelsus broke away from the Galenic traditions, so supreme in medicine up to his time, {61} and began our modern pharmaceutics. Following on the heels of Paracelsus came Van Helmont, the father of modern medical chemistry, and these three did more than any others to enlarge the scope of medication and to make observation rather than authority the most important criterion of truth in medicine. Indeed, the work of these three men dominated medicine, or at least the department of pharmaceutics, down almost to our own day, and their influence is still felt in drug-giving.

While we do not know the absolute date of either the birth or the death of Basil Valentine and are not sure even of the exact period in which he lived and did his work, we are sure that a great original observer about the time of the invention of printing studied mercury and sulphur and various salts, and above all, introduced antimony to the notice of the scientific world, and especially to the favor of pract.i.tioners of medicine. His book, "The Triumphal Chariot of Antimony," is full of conclusions not quite justified by his premises nor by his observations. There is no doubt, however, that the observational methods which he employed did give an immense amount of knowledge and formed the basis of the method of investigation by which the chemical side of medicine was to develop during the next two or three centuries. Great harm was done by the abuse of antimony, but then great harm is done by the abuse of anything, no matter how good it may be. For a {62} time it came to be the most important drug in medicine and was only replaced by venesection.

The fact of the matter is that doctors were looking for effects from their drugs, and antimony is, above all things, effective. Patients, too, wished to see the effect of the medicines they took. They do so even yet, and when antimony was administered there was no doubt about its working.

Some five years ago, when Sir Michael Foster, M.D., professor of physiology in the University of Cambridge, England, was invited to deliver the Lane lectures at the Cooper Medical College, in San Francisco, he took for his subject "The History of Physiology." In the course of his lecture on "The Rise of Chemical Physiology" he began with the name of Basil Valentine, who first attracted men's attention to the many chemical substances around them that might be used in the treatment of disease, and said of him:--

He was one of the alchemists, but in addition to his inquiries into the properties of metals and his search for the philosopher's stone, he busied himself with the nature of drugs, vegetable and mineral, and with their action as remedies for disease. He was no anatomist, no physiologist, but rather what nowadays we should call a pharmacologist. He did not care for the problem of the body, all he sought to understand was how the const.i.tuents of the soil and of plants might be treated so as to be available for healing the sick and how they produced their effects. We apparently owe to him the introduction of many chemical substances, for instance, of {63} hydrochloric acid, which he prepared from oil of vitriol and salt, and of many vegetable drugs. And he was apparently the author of certain conceptions which, as we shall see, played an important part in the development of chemistry and of physiology. To him, it seems, we owe the idea of the three "elements," as they were and have been called, replacing the old idea of the ancients of the four elements--earth, air, fire, and water. It must be remembered, however, that both in the ancient and in the new idea the word "element" was not intended to mean that which it means to us now, a fundamental unit of matter, but a general quality or property of matter. The three elements of Valentine were (1) sulphur, or that which is combustible, which is changed or destroyed, or which at all events disappears during burning or combustion; (2) mercury, that which temporarily disappears during burning or combustion, which is dissociated in the burning from the body burnt, but which may be recovered, that is to say, that which is volatile, and (3) salt, that which is fixed, the residue or ash which remains after burning.

The most interesting of Basil Valentine's books, and the one which has had the most enduring influence, is undoubtedly "The Triumphal Chariot of Antimony." It has been translated and has had a wide vogue in every language of modern Europe. Its recommendation of antimony had such an effect upon medical practice that it continued to be the most important drug in the pharmacopoeia down almost to the middle of the nineteenth century. If any proof were needed that Basil Valentine or that the author of the books that go under that name was a monk, it would be found in the {64} introduction to this volume, which not only states that fact very clearly, but also in doing so makes use of language that shows the writer to have been deeply imbued with the old monastic spirit. I quote the first paragraph of this introduction in order to make clear what I mean. The quotation is taken from the English translation of the work as published in London in 1678.

Curiously enough, seeing the obscurity surrounding Valentine himself, we do not know for sure who made the translation. The translator apologizes somewhat for the deeply religious spirit of the book, but considers that he was not justified in eliminating any of this. Of course, the translation is left in the quaint old-fashioned form so eminently suited to the thoughts of the old master, and the spelling and use of capitals is not changed:

Basil Valentine--His Triumphant Chariot of Antimony Since I, Basil Valentine, by Religious Vows am bound to live according to the Order of St. Benedict, and that requires another manner of spirit of Holiness than the common state of Mortals exercised in the profane business of this World; I thought it my duty before all things, in the beginning of this little book, to declare what is necessary to be known by the pious Spagyrist [old-time name for medical chemist], inflamed with an ardent desire of this Art, as what he ought to do, and whereunto to direct his aim, that he may lay such foundations of the whole matter as may be stable; lest his Building, shaken with the Winds, happen to fall, and the whole Edifice to be involved in shameful Ruine, {65} which otherwise, being founded on more firm and solid principles, might have continued for a long series of time Which Admonition I judged was, is and always will be a necessary part of my Religious Office; especially since we must all die, and no one of us which are now, whether high or low, shall long be seen among the number of men For it concerns me to recommend these Meditations of Mortality to Posterity, leaving them behind me, not only that honor may be given to the Divine Majesty, but also that Men may obey him sincerely in all things.

In this my Meditation I found that there were five princ.i.p.al heads, chiefly to be considered by the wise and prudent spectators of our Wisdom and Art. The first of which is, Invocation of G.o.d. The second, Contemplation of Nature The third, True Preparation. The fourth, the Way of Using. The fifth, Utility and Fruit. For he who regards not these, shall never obtain place among true Chymists, or fill up the number of perfect Spagyrists. Therefore, touching these five heads, we shall here following treat and so far declare them, as that the general Work may be brought to light and perfected by an intent and studious Operator.

This book, though the t.i.tle might seem to indicate it, is not devoted entirely to the study of antimony, but contains many important additions to the chemistry of the time. For instance, Basil Valentine explains in this work how what he calls the spirit of salt might be obtained. He succeeded in manufacturing this material by treating common salt with oil of vitriol and heat. From the description of the uses to which he put the end product of his chemical manipulation, it is evident that under the name of spirit of salt {66} he is describing what we now know as hydrochloric acid. This is the first definite mention of it in the history of science, and the method suggested for its preparation is not very different from that employed even at the present time. He also suggests in this volume how alcohol may be obtained in high strengths. He distilled the spirit obtained from wine over carbonate of pota.s.sium, and thus succeeded in depriving it of a great proportion of its water.

We have said that he was deeply interested in the philosopher's stone.

Naturally this turned his attention to the study of metals, and so it is not surprising to find that he succeeded in formulating a method by which metallic copper could be obtained. The substance used for the purpose was copper pyrites, which was changed to an impure sulphate of copper by the action of oil of vitriol and moist air. The sulphate of copper occurred in solution, and the copper could be precipitated from it by plunging an iron bar into it. Basil Valentine recognized the presence of this peculiar yellow metal and studied some of its qualities. He does not seem to have been quite sure, however, whether the phenomenon that he witnessed was not really a trans.m.u.tation of the iron into copper, as a consequence of the other chemicals present.

There are some observations on chemical physiology, and especially with regard to respiration, in the book on antimony which show their author to have antic.i.p.ated the true explanation of the {67} theory of respiration. He states that animals breathe, because the air is needed to support their life, and that all the animals exhibit the phenomenon of respiration. He even insists that the fishes, though living in water, breathe air, and he adduces in support of this idea the fact that whenever a river is entirely frozen the fishes die. The reason for this being, according to this old-time physiologist, not that the fishes are frozen to death, but that they are not able to obtain air in the ice as they did in the water, and consequently perish.

There are many testimonies to the practical character of all his knowledge and his desire to apply it for the benefit of humanity. The old monk could not repress the expression of his impatience with physicians who gave to patients for diseases of which they knew little, remedies of which they knew less. For him it was an unpardonable sin for a physician not to have faithfully studied the various mixtures that he prescribed for his patients, and not to know not only their appearance and taste and effect, but also the limits of their application. Considering that at the present time it is a frequent source of complaint that physicians often prescribe remedies with whose physical appearances they are not familiar, this complaint of the old-time chemist alchemist will be all the more interesting for the modern physician. It is evident that when Basil Valentine allows his ire to get the better of him it is because of his indignation over the {68} quacks who were abusing medicine and patients in his time, as they have ever since. There is a curious bit of aspersion on mere book-learning in the pa.s.sage that has a distinctly modern ring, and one feels the truth of Russell Lowell's expression that to read a great genius, no matter how antique, is like reading a commentary in the morning paper, so up-to-date does genius ever remain:--

And whensoever I shall have occasion to contend in the School with such a Doctor, who knows not how himself to prepare his own medicines, but commits that business to another, I am sure I shall obtain the Palm from him; for indeed that good man knows not what medicines he prescribes to the sick; whether the color of them be white, black, grey, or blew, he cannot tell; nor doth this wretched man know whether the medicine he gives be dry or hot, cold or humid; but he only knows that he found it so written in his Books, and thence pretends knowledge (or as it were, Possession) by Prescription of a very long time; yet he desires to further Information Here again let it be lawful to exclaim, Good G.o.d, to what a state is the matter brought! what goodness of minde is in these men! what care do they take of the sick! Wo, wo to them! in the day of Judgment they will find the fruit of their ignorance and rashness, then they will see Him whom they pierced, when they neglected their Neighbor, sought after money and nothing else; whereas were they cordial in their profession, they would spend Nights and Days in Labour that they might become more learned in their Art, whence more certain health would accrew to the sick with their Estimation and greater glory to themselves. But since Labour is tedious to them, they commit the {69} matter to chance, and being secure of their Honour, and content with their Fame, they (like Brawlers) defend themselves with a certain garrulity, without any respect had to Confidence or Truth.

Perhaps one of the reasons why Valentine's book has been of such enduring interest is that it is written in an eminently human vein and out of a lively imagination. It is full of figures relating to many other things besides chemistry, which serve to show how deeply this investigating observer was attentive to all the problems of life around him. For instance, when he wants to describe the affinity that exists between many substances in chemistry, and which makes it impossible for them not to be attracted to one another, he takes a figure from the attractions that he sees exist among men and women.

There are some paragraphs with regard to the influence of the pa.s.sion of love that one might think rather a quotation from an old-time sermon than from a great ground-breaking book in the science of chemistry.

Love leaves nothing entire or sound in man; it impedes his sleep; he cannot rest either day or night; it takes off his appet.i.te that he hath no disposition either to meat or drink by reason of the continual torments of his heart and mind. It deprives him of all Providence, hence he neglects his affairs, vocation and business. He minds neither study, labor nor prayer; casts away all thoughts of anything but the body beloved; this is his study, this his most vain occupation. If to lovers the success be not answerable to their wish, or so soon {70} and prosperously as they desire, how many melancholies henceforth arise, with griefs and sadnesses, with which they pine away and wax so lean as they have scarcely any flesh cleaving to the bones Yea, at last they lose the life itself, as may be proved by many examples! for such men, (which is an horrible thing to think of) slight and neglect all perils and detriments, both of the body and life, and of the soul and eternal salvation

It is evident that human nature is not different in our sophisticated twentieth century from that which this observant old monk saw around him in the fifteenth. He continues:--

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Star Odyssey

Star Odyssey

Star Odyssey Chapter 3256: Burial Garden Reappears Author(s) : Along With The Wind, 随散飘风 View : 2,203,346
Legend of Swordsman

Legend of Swordsman

Legend of Swordsman Chapter 6356: Fragments of Memory Author(s) : 打死都要钱, Mr. Money View : 10,253,446
Demon Sword Maiden

Demon Sword Maiden

Demon Sword Maiden Volume 12 - Yomi-no-kuni: Chapter 91 – Sword, Demon Author(s) : Luo Jiang Shen, 罗将神, 罗酱, Carrot Sauce View : 416,413

Catholic Churchmen in Science Part 2 summary

You're reading Catholic Churchmen in Science. This manga has been translated by Updating. Author(s): James J. Walsh. Already has 693 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com