Home

A History of Science Volume III Part 13

A History of Science - novelonlinefull.com

You’re read light novel A History of Science Volume III Part 13 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

As the century closed, half the philosophic world was speculating as to whether "galvanic influence" were a new imponderable, or only a form of electricity; and the other half was eagerly seeking to discover what new marvels the battery might reveal. The least imaginative man could see that here was an invention that would be epoch-making, but the most visionary dreamer could not even vaguely adumbrate the real measure of its importance.

It was evident at once that almost any form of galvanic battery, despite imperfections, was a more satisfactory instrument for generating electricity than the frictional machine hitherto in use, the advantage lying in the fact that the current from the galvanic battery could be controlled practically at will, and that the apparatus itself was inexpensive and required comparatively little attention. These advantages were soon made apparent by the practical application of the electric current in several fields.

It will be recalled that despite the energetic endeavors of such philosophers as Watson, Franklin, Galvani, and many others, the field of practical application of electricity was very limited at the close of the eighteenth century. The lightning-rod had come into general use, to be sure, and its value as an invention can hardly be overestimated. But while it was the result of extensive electrical discoveries, and is a most practical instrument, it can hardly be called one that puts electricity to practical use, but simply acts as a means of warding off the evil effects of a natural manifestation of electricity. The invention, however, had all the effects of a mechanism which turned electricity to practical account. But with the advent of the new kind of electricity the age of practical application began.

DAVY AND ELECTRIC LIGHT

Volta's announcement of his pile was scarcely two months old when two Englishmen, Messrs. Nicholson and Carlisle, made the discovery that the current from the galvanic battery had a decided effect upon certain chemicals, among other things decomposing water into its elements, hydrogen and oxygen. On May 7, 1800, these investigators arranged the ends of two bra.s.s wires connected with the poles of a voltaic pile, composed of alternate silver and zinc plates, so that the current coming from the pile was discharged through a small quant.i.ty of "New River water." "A fine stream of minute bubbles immediately began to flow from the point of the lower wire in the tube which communicated with the silver," wrote Nicholson, "and the opposite point of the upper wire became tarnished, first deep orange and then black...." The product of gas during two hours and a half was two-thirtieths of a cubic inch.

"It was then mixed with an equal quant.i.ty of common air," continues Nicholson, "and exploded by the application of a lighted waxen thread."

This demonstration was the beginning of the very important science of electro-chemistry.

The importance of this discovery was at once recognized by Sir Humphry Davy, who began experimenting immediately in this new field. He constructed a series of batteries in various combinations, with which he attacked the "fixed alkalies," the composition of which was then unknown. Very shortly he was able to decompose potash into bright metallic globules, resembling quicksilver. This new substance he named "pota.s.sium." Then in rapid succession the elementary substances sodium, calcium, strontium, and magnesium were isolated.

It was soon discovered, also, that the new electricity, like the old, possessed heating power under certain conditions, even to the fusing of pieces of wire. This observation was probably first made by Frommsdorff, but it was elaborated by Davy, who constructed a battery of two thousand cells with which he produced a bright light from points of carbon--the prototype of the modern arc lamp. He made this demonstration before the members of the Royal Inst.i.tution in 1810. But the practical utility of such a light for illuminating purposes was still a thing of the future.

The expense of constructing and maintaining such an elaborate battery, and the rapid internal destruction of its plates, together with the constant polarization, rendered its use in practical illumination out of the question. It was not until another method of generating electricity was discovered that Davy's demonstration could be turned to practical account.

In Davy's own account of his experiment he says:

"When pieces of charcoal about an inch long and one-sixth of an inch in diameter were brought near each other (within the thirtieth or fortieth of an inch), a bright spark was produced, and more than half the volume of the charcoal became ignited to whiteness; and, by withdrawing the points from each other, a constant discharge took place through the heated air, in a s.p.a.ce equal to at least four inches, producing a most brilliant ascending arch of light, broad and conical in form in the middle. When any substance was introduced into this arch, it instantly became ignited; platina melted as readily in it as wax in a common candle; quartz, the sapphire, magnesia, lime, all entered into fusion; fragments of diamond and points of charcoal and plumbago seemed to evaporate in it, even when the connection was made in the receiver of an air-pump; but there was no evidence of their having previously undergone fusion. When the communication between the points positively and negatively electrified was made in the air rarefied in the receiver of the air-pump, the distance at which the discharge took place increased as the exhaustion was made; and when the atmosphere in the vessel supported only one-fourth of an inch of mercury in the barometrical gauge, the sparks pa.s.sed through a s.p.a.ce of nearly half an inch; and, by withdrawing the points from each other, the discharge was made through six or seven inches, producing a most brilliant coruscation of purple light; the charcoal became intensely ignited, and some platina wire attached to it fused with brilliant scintillations and fell in large globules upon the plate of the pump. All the phenomena of chemical decomposition were produced with intense rapidity by this combination."(1)

But this experiment demonstrated another thing besides the possibility of producing electric light and chemical decomposition, this being the heating power capable of being produced by the electric current. Thus Davy's experiment of fusing substances laid the foundation of the modern electric furnaces, which are of paramount importance in several great commercial industries.

While some of the results obtained with Davy's batteries were practically as satisfactory as could be obtained with modern cell batteries, the batteries themselves were anything but satisfactory. They were expensive, required constant care and attention, and, what was more important from an experimental standpoint at least, were not constant in their action except for a very limited period of time, the current soon "running down." Numerous experimenters, therefore, set about devising a satisfactory battery, and when, in 1836, John Frederick Daniell produced the cell that bears his name, his invention was epoch-making in the history of electrical progress. The Royal Society considered it of sufficient importance to bestow the Copley medal upon the inventor, whose device is the direct parent of all modern galvanic cells. From the time of the advent of the Daniell cell experiments in electricity were rendered comparatively easy. In the mean while, however, another great discovery was made.

ELECTRICITY AND MAGNETISM

For many years there had been a growing suspicion, amounting in many instances to belief in the close relationship existing between electricity and magnetism. Before the winter of 1815, however, it was a belief that was surmised but not demonstrated. But in that year it occurred to Jean Christian Oersted, of Denmark, to pa.s.s a current of electricity through a wire held parallel with, but not quite touching, a suspended magnetic needle. The needle was instantly deflected and swung out of its position.

"The first experiments in connection with the subject which I am undertaking to explain," wrote Oersted, "were made during the course of lectures which I held last winter on electricity and magnetism. From those experiments it appeared that the magnetic needle could be moved from its position by means of a galvanic battery--one with a closed galvanic circuit. Since, however, those experiments were made with an apparatus of small power, I undertook to repeat and increase them with a large galvanic battery.

"Let us suppose that the two opposite ends of the galvanic apparatus are joined by a metal wire. This I shall always call the conductor for the sake of brevity. Place a rectilinear piece of this conductor in a horizontal position over an ordinary magnetic needle so that it is parallel to it. The magnetic needle will be set in motion and will deviate towards the west under that part of the conductor which comes from the negative pole of the galvanic battery. If the wire is not more than four-fifths of an inch distant from the middle of this needle, this deviation will be about forty-five degrees. At a greater distance the angle of deviation becomes less. Moreover, the deviation varies according to the strength of the battery. The conductor can be moved towards the east or west, so long as it remains parallel to the needle, without producing any other result than to make the deviation smaller.

"The conductor can consist of several combined wires or metal coils. The nature of the metal does not alter the result except, perhaps, to make it greater or less. We have used wires of platinum, gold, silver, bra.s.s, and iron, and coils of lead, tin, and quicksilver with the same result.

If the conductor is interrupted by water, all effect is not cut off, unless the stretch of water is several inches long.

"The conductor works on the magnetic needle through gla.s.s, metals, wood, water, and resin, through clay vessels and through stone, for when we placed a gla.s.s plate, a metal plate, or a board between the conductor and the needle the effect was not cut off; even the three together seemed hardly to weaken the effect, and the same was the case with an earthen vessel, even when it was full of water. Our experiments also demonstrated that the said effects were not altered when we used a magnetic needle which was in a bra.s.s case full of water.

"When the conductor is placed in a horizontal plane under the magnetic needle all the effects we have described take place in precisely the same way, but in the opposite direction to what took place when the conductor was in a horizontal plane above the needle.

"If the conductor is moved in a horizontal plane so that it gradually makes ever-increasing angles with the magnetic meridian, the deviation of the magnetic needle from the magnetic meridian is increased when the wire is turned towards the place of the needle; it decreases, on the other hand, when it is turned away from that place.

"A needle of bra.s.s which is hung in the same way as the magnetic needle is not set in motion by the influence of the conductor. A needle of gla.s.s or rubber likewise remains static under similar experiments. Hence the electrical conductor affects only the magnetic parts of a substance.

That the electrical current is not confined to the conducting wire, but is comparatively widely diffused in the surrounding s.p.a.ce, is sufficiently demonstrated from the foregoing observations."(2)

The effect of Oersted's demonstration is almost incomprehensible. By it was shown the close relationship between magnetism and electricity. It showed the way to the establishment of the science of electrodynamics; although it was by the French savant Andre Marie Ampere (1775-1836) that the science was actually created, and this within the s.p.a.ce of one week after hearing of Oersted's experiment in deflecting the needle. Ampere first received the news of Oersted's experiment on September 11, 1820, and on the 18th of the same month he announced to the Academy the fundamental principles of the science of electro-dynamics--seven days of rapid progress perhaps unequalled in the history of science.

Ampere's distinguished countryman, Arago, a few months later, gave the finishing touches to Oersted's and Ampere's discoveries, by demonstrating conclusively that electricity not only influenced a magnet, but actually produced magnetism under proper circ.u.mstances--a complemental fact most essential in practical mechanics.

Some four years after Arago's discovery, Sturgeon made the first "electro-magnet" by winding a soft iron core with wire through which a current of electricity was pa.s.sed. This study of electro-magnets was taken up by Professor Joseph Henry, of Albany, New York, who succeeded in making magnets of enormous lifting power by winding the iron core with several coils of wire. One of these magnets, excited by a single galvanic cell of less than half a square foot of surface, and containing only half a pint of dilute acids, sustained a weight of six hundred and fifty pounds.

Thus by Oersted's great discovery of the intimate relationship of magnetism and electricity, with further elaborations and discoveries by Ampere, Volta, and Henry, and with the invention of Daniell's cell, the way was laid for putting electricity to practical use. Soon followed the invention and perfection of the electro-magnetic telegraph and a host of other but little less important devices.

FARADAY AND ELECTRO-MAGNETIC INDUCTION

With these great discoveries and inventions at hand, electricity became no longer a toy or a "plaything for philosophers," but of enormous and growing importance commercially. Still, electricity generated by chemical action, even in a very perfect cell, was both feeble and expensive, and, withal, only applicable in a comparatively limited field. Another important scientific discovery was necessary before such things as electric traction and electric lighting on a large scale were to become possible; but that discovery was soon made by Sir Michael Faraday.

Faraday, the son of a blacksmith and a bookbinder by trade, had interested Sir Humphry Davy by his admirable notes on four of Davy's lectures, which he had been able to attend. Although advised by the great scientist to "stick to his bookbinding" rather than enter the field of science, Faraday became, at twenty-two years of age, Davy's a.s.sistant in the Royal Inst.i.tution. There, for several years, he devoted all his spare hours to scientific investigations and experiments, perfecting himself in scientific technique.

A few years later he became interested, like all the scientists of the time, in Arago's experiment of rotating a copper disk underneath a suspended compa.s.s-needle. When this disk was rotated rapidly, the needle was deflected, or even rotated about its axis, in a manner quite inexplicable. Faraday at once conceived the idea that the cause of this rotation was due to electricity, induced in the revolving disk--not only conceived it, but put his belief in writing. For several years, however, he was unable to demonstrate the truth of his a.s.sumption, although he made repeated experiments to prove it. But in 1831 he began a series of experiments that established forever the fact of electro-magnetic induction.

In his famous paper, read before the Royal Society in 1831, Faraday describes the method by which he first demonstrated electro-magnetic induction, and then explained the phenomenon of Arago's revolving disk.

"About twenty-six feet of copper wire, one-twentieth of an inch in diameter, were wound round a cylinder of wood as a helix," he said, "the different spires of which were prevented from touching by a thin interposed twine. This helix was covered with calico, and then a second wire applied in the same manner. In this way twelve helices were "superposed, each containing an average length of wire of twenty-seven feet, and all in the same direction. The first, third, fifth, seventh, ninth, and eleventh of these helices were connected at their extremities end to end so as to form one helix; the others were connected in a similar manner; and thus two princ.i.p.al helices were produced, closely interposed, having the same direction, not touching anywhere, and each containing one hundred and fifty-five feet in length of wire.

One of these helices was connected with a galvanometer, the other with a voltaic battery of ten pairs of plates four inches square, with double coppers and well charged; yet not the slightest sensible deflection of the galvanometer needle could be observed.

"A similar compound helix, consisting of six lengths of copper and six of soft iron wire, was constructed. The resulting iron helix contained two hundred and eight feet; but whether the current from the trough was pa.s.sed through the copper or the iron helix, no effect upon the other could be perceived at the galvanometer.

"In these and many similar experiments no difference in action of any kind appeared between iron and other metals.

"Two hundred and three feet of copper wire in one length were pa.s.sed round a large block of wood; other two hundred and three feet of similar wire were interposed as a spiral between the turns of the first, and metallic contact everywhere prevented by twine. One of these helices was connected with a galvanometer and the other with a battery of a hundred pairs of plates four inches square, with double coppers and well charged. When the contact was made, there was a sudden and very slight effect at the galvanometer, and there was also a similar slight effect when the contact with the battery was broken. But whilst the voltaic current was continuing to pa.s.s through the one helix, no galvanometrical appearances of any effect like induction upon the other helix could be perceived, although the active power of the battery was proved to be great by its heating the whole of its own helix, and by the brilliancy of the discharge when made through charcoal.

"Repet.i.tion of the experiments with a battery of one hundred and twenty pairs of plates produced no other effects; but it was ascertained, both at this and at the former time, that the slight deflection of the needle occurring at the moment of completing the connection was always in one direction, and that the equally slight deflection produced when the contact was broken was in the other direction; and, also, that these effects occurred when the first helices were used.

"The results which I had by this time obtained with magnets led me to believe that the battery current through one wire did, in reality, induce a similar current through the other wire, but that it continued for an instant only, and partook more of the nature of the electrical wave pa.s.sed through from the shock of a common Leyden jar than of that from a voltaic battery, and, therefore, might magnetize a steel needle although it scarcely affected the galvanometer.

"This expectation was confirmed; for on subst.i.tuting a small hollow helix, formed round a gla.s.s tube, for the galvanometer, introducing a steel needle, making contact as before between the battery and the inducing wire, and then removing the needle before the battery contact was broken, it was found magnetized.

"When the battery contact was first made, then an unmagnetized needle introduced, and lastly the battery contact broken, the needle was found magnetized to an equal degree apparently with the first; but the poles were of the contrary kinds."(3)

To Faraday these experiments explained the phenomenon of Arago's rotating disk, the disk inducing the current from the magnet, and, in reacting, deflecting the needle. To prove this, he constructed a disk that revolved between the poles of an electro-magnet, connecting the axis and the edge of the disk with a galvanometer. "... A disk of copper, twelve inches in diameter, fixed upon a bra.s.s axis," he says, "was mounted in frames so as to be revolved either vertically or horizontally, its edge being at the same time introduced more or less between the magnetic poles. The edge of the plate was well amalgamated for the purpose of obtaining good but movable contact; a part round the axis was also prepared in a similar manner.

"Conductors or collectors of copper and lead were constructed so as to come in contact with the edge of the copper disk, or with other forms of plates hereafter to be described. These conductors we're about four inches long, one-third of an inch wide, and one-fifth of an inch thick; one end of each was slightly grooved, to allow of more exact adaptation to the somewhat convex edge of the plates, and then amalgamated. Copper wires, one-sixteenth of an inch in thickness, attached in the ordinary manner by convolutions to the other ends of these conductors, pa.s.sed away to the galvanometer.

"All these arrangements being made, the copper disk was adjusted, the small magnetic poles being about one-half an inch apart, and the edge of the plate inserted about half their width between them. One of the galvanometer wires was pa.s.sed twice or thrice loosely round the bra.s.s axis of the plate, and the other attached to a conductor, which itself was retained by the hand in contact with the amalgamated edge of the disk at the part immediately between the magnetic poles. Under these circ.u.mstances all was quiescent, and the galvanometer exhibited no effect. But the instant the plate moved the galvanometer was influenced, and by revolving the plate quickly the needle could be deflected ninety degrees or more."(4)

This rotating disk was really a dynamo electric machine in miniature, the first ever constructed, but whose direct descendants are the ordinary dynamos. Modern dynamos range in power from little machines operating machinery requiring only fractions of a horsepower to great dynamos operating street-car lines and lighting cities; but all are built on the same principle as Faraday's rotating disk. By this discovery the use of electricity as a practical and economical motive power became possible.

STORAGE BATTERIES

When the discoveries of Faraday of electro-magnetic induction had made possible the means of easily generating electricity, the next natural step was to find a means of storing it or acc.u.mulating it. This, however, proved no easy matter, and as yet a practical storage or secondary battery that is neither too c.u.mbersome, too fragile, nor too weak in its action has not been invented. If a satisfactory storage battery could be made, it is obvious that its revolutionary effects could scarcely be overestimated. In the single field of aeronautics, it would probably solve the question of aerial navigation. Little wonder, then, that inventors have sought so eagerly for the invention of satisfactory storage batteries. As early as 1803 Ritter had attempted to make such a secondary battery. In 1843 Grove also attempted it. But it was not until 1859, when Gaston Planche produced his invention, that anything like a reasonably satisfactory storage battery was made.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Cultivating In Secret Beside A Demoness

Cultivating In Secret Beside A Demoness

Cultivating In Secret Beside A Demoness Chapter 1341: Great Overarching Heaven (1) Author(s) : Red Chilli Afraid Of Spiciness, Red Pepper Afraid Of Spicy, Pà Là De Hóngjiāo, 怕辣的红椒 View : 535,983
Absolute Resonance

Absolute Resonance

Absolute Resonance Chapter 1446: Husband and Wife Tag Team Author(s) : Heavenly Silkworm Potato, 天蚕土豆, Tian Can Tu Dou View : 1,760,960
I'll Be the Male Leads Sister-in-Law

I'll Be the Male Leads Sister-in-Law

I'll Be the Male Leads Sister-in-Law Chapter 555 Author(s) : September Flowing Fire, 九月流火 View : 179,249

A History of Science Volume III Part 13 summary

You're reading A History of Science. This manga has been translated by Updating. Author(s): Henry Smith Williams. Already has 733 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com