Home

A History of Science Volume II Part 2

A History of Science - novelonlinefull.com

You’re read light novel A History of Science Volume II Part 2 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

A certain ma.n.u.script of the great Cornelius Celsus, the De Medicine, which had been lost for many centuries, was found in the church of St.

Ambrose, at Milan, in 1443, and was at once put into print. The effect of the publication of this book, which had lain in hiding for so many centuries, was a revelation, showing the medical profession how far most of their supposed true copies of Celsus had drifted away from the original. The indisputable authenticity of this ma.n.u.script, discovered and vouched for by the man who shortly after became Pope Nicholas V., made its publication the more impressive. The output in book form of other authorities followed rapidly, and the manifest discrepancies between such teachers as Celsus, Hippocrates, Galen, and Pliny heightened still more the growing spirit of criticism.

These doubts resulted in great controversies as to the proper treatment of certain diseases, some physicians following Hippocrates, others Galen or Celsus, still others the Arabian masters. One of the most bitter of these contests was over the question of "revulsion," and "derivation"--that is, whether in cases of pleurisy treated by bleeding, the venesection should be made at a point distant from the seat of the disease, as held by the "revulsionists," or at a point nearer and on the same side of the body, as practised by the "derivationists." That any great point for discussion could be raised in the fifteenth or sixteenth centuries on so simple a matter as it seems to-day shows how necessary to the progress of medicine was the discovery of the circulation of the blood made by Harvey two centuries later. After Harvey's discovery no such discussion could have been possible, because this discovery made it evident that as far as the general effect upon the circulation is concerned, it made little difference whether the bleeding was done near a diseased part or remote from it. But in the sixteenth century this question was the all-absorbing one among the doctors. At one time the faculty of Paris condemned "derivation"; but the supporters of this method carried the war still higher, and Emperor Charles V. himself was appealed to. He reversed the decision of the Paris faculty, and decided in favor of "derivation." His decision was further supported by Pope Clement VII., although the discussion dragged on until cut short by Harvey's discovery.

But a new form of injury now claimed the attention of the surgeons, something that could be decided by neither Greek nor Arabian authors, as the treatment of gun-shot wounds was, for obvious reasons, not given in their writings. About this time, also, came the great epidemics, "the sweating sickness" and scurvy; and upon these subjects, also, the Greeks and Arabians were silent. John of Vigo, in his book, the Practica Copiosa, published in 1514, and repeated in many editions, became the standard authority on all these subjects, and thus supplanted the works of the ancient writers.

According to Vigo, gun-shot wounds differed from the wounds made by ordinary weapons--that is, spear, arrow, sword, or axe--in that the bullet, being round, bruised rather than cut its way through the tissues; it burned the flesh; and, worst of all, it poisoned it. Vigo laid especial stress upon treating this last condition, recommending the use of the cautery or the oil of elder, boiling hot. It is little wonder that gun-shot wounds were so likely to prove fatal. Yet, after all, here was the germ of the idea of antisepsis.

NEW BEGINNINGS IN GENERAL SCIENCE

We have dwelt thus at length on the subject of medical science, because it was chiefly in this field that progress was made in the Western world during the mediaeval period, and because these studies furnished the point of departure for the revival all along the line. It will be understood, however, from what was stated in the preceding chapter, that the Arabian influences in particular were to some extent making themselves felt along other lines. The opportunity afforded a portion of the Western world--notably Spain and Sicily--to gain access to the scientific ideas of antiquity through Arabic translations could not fail of influence. Of like character, and perhaps even more p.r.o.nounced in degree, was the influence wrought by the Byzantine refugees, who, when Constantinople began to be threatened by the Turks, migrated to the West in considerable numbers, bringing with them a knowledge of Greek literature and a large number of precious works which for centuries had been quite forgotten or absolutely ignored in Italy. Now Western scholars began to take an interest in the Greek language, which had been utterly neglected since the beginning of the Middle Ages. Interesting stories are told of the efforts made by such men as Cosmo de' Medici to gain possession of cla.s.sical ma.n.u.scripts. The revival of learning thus brought about had its first permanent influence in the fields of literature and art, but its effect on science could not be long delayed.

Quite independently of the Byzantine influence, however, the striving for better intellectual things had manifested itself in many ways before the close of the thirteenth century. An ill.u.s.tration of this is found in the almost simultaneous development of centres of teaching, which developed into the universities of Italy, France, England, and, a little later, of Germany.

The regular list of studies that came to be adopted everywhere comprised seven nominal branches, divided into two groups--the so-called quadrivium, comprising music, arithmetic, geometry, and astronomy; and the trivium comprising grammar, rhetoric, and logic. The vagueness of implication of some of these branches gave opportunity to the teacher for the promulgation of almost any knowledge of which he might be possessed, but there can be no doubt that, in general, science had but meagre share in the curriculum. In so far as it was given representation, its chief field must have been Ptolemaic astronomy. The utter lack of scientific thought and scientific method is ill.u.s.trated most vividly in the works of the greatest men of that period--such men as Albertus Magnus, Thomas Aquinas, Bonaventura, and the hosts of other scholastics of lesser rank. Yet the mental awakening implied in their efforts was sure to extend to other fields, and in point of fact there was at least one contemporary of these great scholastics whose mind was intended towards scientific subjects, and who produced writings strangely at variance in tone and in content with the others. This anachronistic thinker was the English monk, Roger Bacon.

ROGER BACON

Bacon was born in 1214 and died in 1292. By some it is held that he was not appreciated in his own time because he was really a modern scientist living in an age two centuries before modern science or methods of modern scientific thinking were known. Such an estimate, however, is a manifest exaggeration of the facts, although there is probably a grain of truth in it withal. His learning certainly brought him into contact with the great thinkers of the time, and his writings caused him to be imprisoned by his fellow-churchmen at different times, from which circ.u.mstances we may gather that he was advanced thinker, even if not a modern scientist.

Although Bacon was at various times in durance, or under surveillance, and forbidden to write, he was nevertheless a marvellously prolific writer, as is shown by the numerous books and unpublished ma.n.u.scripts of his still extant. His master-production was the Opus Majus. In Part IV.

of this work he attempts to show that all sciences rest ultimately on mathematics; but Part V., which treats of perspective, is of particular interest to modern scientists, because in this he discusses reflection and refraction, and the properties of mirrors and lenses. In this part, also, it is evident that he is making use of such Arabian writers as Alkindi and Alhazen, and this is of especial interest, since it has been used by his detractors, who accuse him of lack of originality, to prove that his seeming inventions and discoveries were in reality adaptations of the Arab scientists. It is difficult to determine just how fully such criticisms are justified. It is certain, however, that in this part he describes the anatomy of the eye with great accuracy, and discusses mirrors and lenses.

The magnifying power of the segment of a gla.s.s sphere had been noted by Alhazen, who had observed also that the magnification was increased by increasing the size of the segment used. Bacon took up the discussion of the comparative advantages of segments, and in this discussion seems to show that he understood how to trace the progress of the rays of light through a spherical transparent body, and how to determine the place of the image. He also described a method of constructing a telescope, but it is by no means clear that he had ever actually constructed such an instrument. It is also a mooted question as to whether his instructions as to the construction of such an instrument would have enabled any one to construct one. The vagaries of the names of terms as he uses them allow such lat.i.tude in interpretation that modern scientists are not agreed as to the practicability of Bacon's suggestions. For example, he constantly refers to force under such names as virtus, species, imago, agentis, and a score of other names, and this naturally gives rise to the great differences in the interpretations of his writings, with corresponding differences in estimates of them.

The claim that Bacon originated the use of lenses, in the form of spectacles, cannot be proven. Smith has determined that as early as the opening years of the fourteenth century such lenses were in use, but this proves nothing as regards Bacon's connection with their invention.

The knowledge of lenses seems to be very ancient, if we may judge from the convex lens of rock crystal found by Layard in his excavations at Nimrud. There is nothing to show, however, that the ancients ever thought of using them to correct defects of vision. Neither, apparently, is it feasible to determine whether the idea of such an application originated with Bacon.

Another mechanical discovery about which there has been a great deal of discussion is Bacon's supposed invention of gunpowder. It appears that in a certain pa.s.sage of his work he describes the process of making a substance that is, in effect, ordinary gunpowder; but it is more than doubtful whether he understood the properties of the substance he describes. It is fairly well established, however, that in Bacon's time gunpowder was known to the Arabs, so that it should not be surprising to find references made to it in Bacon's work, since there is reason to believe that he constantly consulted Arabian writings.

The great merit of Bacon's work, however, depends on the principles taught as regards experiment and the observation of nature, rather than on any single invention. He had the all-important idea of breaking with tradition. He championed unfettered inquiry in every field of thought.

He had the instinct of a scientific worker--a rare instinct indeed in that age. Nor need we doubt that to the best of his opportunities he was himself an original investigator.

LEONARDO DA VINCI

The relative infertility of Bacon's thought is shown by the fact that he founded no school and left no trace of discipleship. The entire century after his death shows no single European name that need claim the attention of the historian of science. In the latter part of the fifteenth century, however, there is evidence of a renaissance of science no less than of art. The German Muller became famous under the latinized named of Regio Monta.n.u.s (1437-1472), although his actual scientific attainments would appear to have been important only in comparison with the utter ignorance of his contemporaries. The most distinguished worker of the new era was the famous Italian Leonardo da Vinci--a man who has been called by Hamerton the most universal genius that ever lived. Leonardo's position in the history of art is known to every one. With that, of course, we have no present concern; but it is worth our while to inquire at some length as to the famous painter's accomplishments as a scientist.

From a pa.s.sage in the works of Leonardo, first brought to light by Venturi,(1) it would seem that the great painter antic.i.p.ated Copernicus in determining the movement of the earth. He made mathematical calculations to prove this, and appears to have reached the definite conclusion that the earth does move--or what amounts to the same thing, that the sun does not move. Muntz is authority for the statement that in one of his writings he declares, "Il sole non si mouve"--the sun does not move.(2)

Among his inventions is a dynamometer for determining the traction power of machines and animals, and his experiments with steam have led some of his enthusiastic partisans to claim for him priority to Watt in the invention of the steam-engine. In these experiments, however, Leonardo seems to have advanced little beyond Hero of Alexandria and his steam toy. Hero's steam-engine did nothing but rotate itself by virtue of escaping jets of steam forced from the bent tubes, while Leonardo's "steam-engine" "drove a ball weighing one talent over a distance of six stadia." In a ma.n.u.script now in the library of the Inst.i.tut de France, Da Vinci describes this engine minutely. The action of this machine was due to the sudden conversion of small quant.i.ties of water into steam ("smoke," as he called it) by coming suddenly in contact with a heated surface in a proper receptacle, the rapidly formed steam acting as a propulsive force after the manner of an explosive. It is really a steam-gun, rather than a steam-engine, and it is not unlikely that the study of the action of gunpowder may have suggested it to Leonardo.

It is believed that Leonardo is the true discoverer of the camera-obscura, although the Neapolitan philosopher, Giambattista Porta, who was not born until some twenty years after the death of Leonardo, is usually credited with first describing this device. There is little doubt, however, that Da Vinci understood the principle of this mechanism, for he describes how such a camera can be made by cutting a small, round hole through the shutter of a darkened room, the reversed image of objects outside being shown on the opposite wall.

Like other philosophers in all ages, he had observed a great number of facts which he was unable to explain correctly. But such acc.u.mulations of scientific observations are always interesting, as showing how many centuries of observation frequently precede correct explanation. He observed many facts about sounds, among others that blows struck upon a bell produced sympathetic sounds in a bell of the same kind; and that striking the string of a lute produced vibration in corresponding strings of lutes strung to the same pitch. He knew, also, that sounds could be heard at a distance at sea by listening at one end of a tube, the other end of which was placed in the water; and that the same expedient worked successfully on land, the end of the tube being placed against the ground.

The knowledge of this great number of unexplained facts is often interpreted by the admirers of Da Vinci, as showing an almost occult insight into science many centuries in advance of his time. Such interpretations, however, are illusive. The observation, for example, that a tube placed against the ground enables one to hear movements on the earth at a distance, is not in itself evidence of anything more than acute scientific observation, as a similar method is in use among almost every race of savages, notably the American Indians. On the other hand, one is inclined to give credence to almost any story of the breadth of knowledge of the man who came so near antic.i.p.ating Hutton, Lyell, and Darwin in his interpretation of the geological records as he found them written on the rocks.

It is in this field of geology that Leonardo is ent.i.tled to the greatest admiration by modern scientists. He had observed the deposit of fossil sh.e.l.ls in various strata of rocks, even on the tops of mountains, and he rejected once for all the theory that they had been deposited there by the Deluge. He rightly interpreted their presence as evidence that they had once been deposited at the bottom of the sea. This process he a.s.sumed bad taken hundreds and thousands of centuries, thus tacitly rejecting the biblical tradition as to the date of the creation.

Notwithstanding the obvious interest that attaches to the investigations of Leonardo, it must be admitted that his work in science remained almost as infertile as that of his great precursor, Bacon. The really stimulative work of this generation was done by a man of affairs, who knew little of theoretical science except in one line, but who pursued that one practical line until he achieved a wonderful result. This man was Christopher Columbus. It is not necessary here to tell the trite story of his accomplishment. Suffice it that his practical demonstration of the rotundity of the earth is regarded by most modern writers as marking an epoch in history. With the year of his voyage the epoch of the Middle Ages is usually regarded as coming to an end. It must not be supposed that any very sudden change came over the aspect of scholarship of the time, but the preliminaries of great things had been achieved, and when Columbus made his famous voyage in 1492, the man was already alive who was to bring forward the first great vitalizing thought in the field of pure science that the Western world had originated for more than a thousand years. This man bore the name of Kopernik, or in its familiar Anglicized form, Copernicus. His life work and that of his disciples will claim our attention in the succeeding chapter.

IV. THE NEW COSMOLOGY--COPERNICUS TO KEPLER AND GALILEO

We have seen that the Ptolemaic astronomy, which was the accepted doctrine throughout the Middle Ages, taught that the earth is round.

Doubtless there was a popular opinion current which regarded the earth as flat, but it must be understood that this opinion had no champions among men of science during the Middle Ages. When, in the year 1492, Columbus sailed out to the west on his memorable voyage, his expectation of reaching India had full scientific warrant, however much it may have been scouted by certain ecclesiastics and by the average man of the period. Nevertheless, we may well suppose that the successful voyage of Columbus, and the still more demonstrative one made about thirty years later by Magellan, gave the theory of the earth's rotundity a certainty it could never previously have had. Alexandrian geographers had measured the size of the earth, and had not hesitated to a.s.sert that by sailing westward one might reach India. But there is a wide gap between theory and practice, and it required the voyages of Columbus and his successors to bridge that gap.

After the companions of Magellan completed the circ.u.mnavigation of the globe, the general shape of our earth would, obviously, never again be called in question. But demonstration of the sphericity of the earth had, of course, no direct bearing upon the question of the earth's position in the universe. Therefore the voyage of Magellan served to fortify, rather than to dispute, the Ptolemaic theory. According to that theory, as we have seen, the earth was supposed to lie immovable at the centre of the universe; the various heavenly bodies, including the sun, revolving about it in eccentric circles. We have seen that several of the ancient Greeks, notably Aristarchus, disputed this conception, declaring for the central position of the sun in the universe, and the motion of the earth and other planets about that body. But this revolutionary theory seemed so opposed to the ordinary observation that, having been discountenanced by Hipparchus and Ptolemy, it did not find a single important champion for more than a thousand years after the time of the last great Alexandrian astronomer.

The first man, seemingly, to hark back to the Aristarchian conception in the new scientific era that was now dawning was the noted cardinal, Nikolaus of Cusa, who lived in the first half of the fifteenth century, and was distinguished as a philosophical writer and mathematician. His De Docta Ignorantia expressly propounds the doctrine of the earth's motion. No one, however, paid the slightest attention to his suggestion, which, therefore, merely serves to furnish us with another interesting ill.u.s.tration of the futility of propounding even a correct hypothesis before the time is ripe to receive it--particularly if the hypothesis is not fully fortified by reasoning based on experiment or observation.

The man who was destined to put forward the theory of the earth's motion in a way to command attention was born in 1473, at the village of Thorn, in eastern Prussia. His name was Nicholas Copernicus. There is no more famous name in the entire annals of science than this, yet posterity has never been able fully to establish the lineage of the famous expositor of the true doctrine of the solar system. The city of Thorn lies in a province of that border territory which was then under control of Poland, but which subsequently became a part of Prussia. It is claimed that the aspects of the city were essentially German, and it is admitted that the mother of Copernicus belonged to that race. The nationality of the father is more in doubt, but it is urged that Copernicus used German as his mother-tongue. His great work was, of course, written in Latin, according to the custom of the time; but it is said that, when not employing that language, he always wrote in German. The disputed nationality of Copernicus strongly suggests that he came of a mixed racial lineage, and we are reminded again of the influences of those ethnical minglings to which we have previously more than once referred.

The acknowledged centres of civilization towards the close of the fifteenth century were Italy and Spain. Therefore, the birthplace of Copernicus lay almost at the confines of civilization, reminding us of that earlier period when Greece was the centre of culture, but when the great Greek thinkers were born in Asia Minor and in Italy.

As a young man, Copernicus made his way to Vienna to study medicine, and subsequently he journeyed into Italy and remained there many years, About the year 1500 he held the chair of mathematics in a college at Rome. Subsequently he returned to his native land and pa.s.sed his remaining years there, dying at Domkerr, in Frauenburg, East Prussia, in the year 1543.

It would appear that Copernicus conceived the idea of the heliocentric system of the universe while he was a comparatively young man, since in the introduction to his great work, which he addressed to Pope Paul III., he states that he has pondered his system not merely nine years, in accordance with the maxim of Horace, but well into the fourth period of nine years. Throughout a considerable portion of this period the great work of Copernicus was in ma.n.u.script, but it was not published until the year of his death. The reasons for the delay are not very fully established. Copernicus undoubtedly taught his system throughout the later decades of his life. He himself tells us that he had even questioned whether it were not better for him to confine himself to such verbal teaching, following thus the example of Pythagoras. Just as his life was drawing to a close, he decided to pursue the opposite course, and the first copy of his work is said to have been placed in his hands as he lay on his deathbed.

The violent opposition which the new system met from ecclesiastical sources led subsequent commentators to suppose that Copernicus had delayed publication of his work through fear of the church authorities.

There seems, however, to be no direct evidence for this opinion. It has been thought significant that Copernicus addressed his work to the pope.

It is, of course, quite conceivable that the aged astronomer might wish by this means to demonstrate that he wrote in no spirit of hostility to the church. His address to the pope might have been considered as a desirable shield precisely because the author recognized that his work must needs meet with ecclesiastical criticism. Be that as it may, Copernicus was removed by death from the danger of attack, and it remained for his disciples of a later generation to run the gauntlet of criticism and suffer the charges of heresy.

The work of Copernicus, published thus in the year 1543 at Nuremberg, bears the t.i.tle De Orbium Coelestium Revolutionibus.

It is not necessary to go into details as to the cosmological system which Copernicus advocated, since it is familiar to every one. In a word, he supposed the sun to be the centre of all the planetary motions, the earth taking its place among the other planets, the list of which, as known at that time, comprised Mercury, Venus, the Earth, Mars, Jupiter, and Saturn. The fixed stars were alleged to be stationary, and it was necessary to suppose that they are almost infinitely distant, inasmuch as they showed to the observers of that time no parallax; that is to say, they preserved the same apparent position when viewed from the opposite points of the earth's...o...b..t.

But let us allow Copernicus to speak for himself regarding his system, His exposition is full of interest. We quote first the introduction just referred to, in which appeal is made directly to the pope.

"I can well believe, most holy father, that certain people, when they hear of my attributing motion to the earth in these books of mine, will at once declare that such an opinion ought to be rejected. Now, my own theories do not please me so much as not to consider what others may judge of them. Accordingly, when I began to reflect upon what those persons who accept the stability of the earth, as confirmed by the opinion of many centuries, would say when I claimed that the earth moves, I hesitated for a long time as to whether I should publish that which I have written to demonstrate its motion, or whether it would not be better to follow the example of the Pythagoreans, who used to hand down the secrets of philosophy to their relatives and friends only in oral form. As I well considered all this, I was almost impelled to put the finished work wholly aside, through the scorn I had reason to antic.i.p.ate on account of the newness and apparent contrariness to reason of my theory.

"My friends, however, dissuaded me from such a course and admonished me that I ought to publish my book, which had lain concealed in my possession not only nine years, but already into four times the ninth year. Not a few other distinguished and very learned men asked me to do the same thing, and told me that I ought not, on account of my anxiety, to delay any longer in consecrating my work to the general service of mathematicians.

"But your holiness will perhaps not so much wonder that I have dared to bring the results of my night labors to the light of day, after having taken so much care in elaborating them, but is waiting instead to hear how it entered my mind to imagine that the earth moved, contrary to the accepted opinion of mathematicians--nay, almost contrary to ordinary human understanding. Therefore I will not conceal from your holiness that what moved me to consider another way of reckoning the motions of the heavenly bodies was nothing else than the fact that the mathematicians do not agree with one another in their investigations. In the first place, they are so uncertain about the motions of the sun and moon that they cannot find out the length of a full year. In the second place, they apply neither the same laws of cause and effect, in determining the motions of the sun and moon and of the five planets, nor the same proofs. Some employ only concentric circles, others use eccentric and epicyclic ones, with which, however, they do not fully attain the desired end. They could not even discover nor compute the main thing--namely, the form of the universe and the symmetry of its parts. It was with them as if some should, from different places, take hands, feet, head, and other parts of the body, which, although very beautiful, were not drawn in their proper relations, and, without making them in any way correspond, should construct a monster instead of a human being.

"Accordingly, when I had long reflected on this uncertainty of mathematical tradition, I took the trouble to read again the books of all the philosophers I could get hold of, to see if some one of them had not once believed that there were other motions of the heavenly bodies.

First I found in Cicero that Niceties had believed in the motion of the earth. Afterwards I found in Plutarch, likewise, that some others had held the same opinion. This induced me also to begin to consider the movability of the earth, and, although the theory appeared contrary to reason, I did so because I knew that others before me had been allowed to a.s.sume rotary movements at will, in order to explain the phenomena of these celestial bodies. I was of the opinion that I, too, might be permitted to see whether, by presupposing motion in the earth, more reliable conclusions than hitherto reached could not be discovered for the rotary motions of the spheres. And thus, acting on the hypothesis of the motion which, in the following book, I ascribe to the earth, and by long and continued observations, I have finally discovered that if the motion of the other planets be carried over to the relation of the earth and this is made the basis for the rotation of every star, not only will the phenomena of the planets be explained thereby, but also the laws and the size of the stars; all their spheres and the heavens themselves will appear so harmoniously connected that nothing could be changed in any part of them without confusion in the remaining parts and in the whole universe. I do not doubt that clever and learned men will agree with me if they are willing fully to comprehend and to consider the proofs which I advance in the book before us. In order, however, that both the learned and the unlearned may see that I fear no man's judgment, I wanted to dedicate these, my night labors, to your holiness, rather than to any one else, because you, even in this remote corner of the earth where I live, are held to be the greatest in dignity of station and in love for all sciences and for mathematics, so that you, through your position and judgment, can easily suppress the bites of slanderers, although the proverb says that there is no remedy against the bite of calumny."

In chapter X. of book I., "On the Order of the Spheres," occurs a more detailed presentation of the system, as follows:

"That which Martia.n.u.s Capella, and a few other Latins, very well knew, appears to me extremely noteworthy. He believed that Venus and Mercury revolve about the sun as their centre and that they cannot go farther away from it than the circles of their orbits permit, since they do not revolve about the earth like the other planets. According to this theory, then, Mercury's...o...b..t would be included within that of Venus, which is more than twice as great, and would find room enough within it for its revolution.

"If, acting upon this supposition, we connect Saturn, Jupiter, and Mars with the same centre, keeping in mind the greater extent of their orbits, which include the earth's sphere besides those of Mercury and Venus, we cannot fail to see the explanation of the regular order of their motions. He is certain that Saturn, Jupiter, and Mars are always nearest the earth when they rise in the evening--that is, when they appear over against the sun, or the earth stands between them and the sun--but that they are farthest from the earth when they set in the evening--that is, when we have the sun between them and the earth. This proves sufficiently that their centre belongs to the sun and is the same about which the orbits of Venus and Mercury circle. Since, however, all have one centre, it is necessary for the s.p.a.ce intervening between the orbits of Venus and Mars to include the earth with her accompanying moon and all that is beneath the moon; for the moon, which stands unquestionably nearest the earth, can in no way be separated from her, especially as there is sufficient room for the moon in the aforesaid s.p.a.ce. Hence we do not hesitate to claim that the whole system, which includes the moon with the earth for its centre, makes the round of that great circle between the planets, in yearly motion about the sun, and revolves about the centre of the universe, in which the sun rests motionless, and that all which looks like motion in the sun is explained by the motion of the earth. The extent of the universe, however, is so great that, whereas the distance of the earth from the sun is considerable in comparison with the size of the other planetary orbits, it disappears when compared with the sphere of the fixed stars. I hold this to be more easily comprehensible than when the mind is confused by an almost endless number of circles, which is necessarily the case with those who keep the earth in the middle of the universe. Although this may appear incomprehensible and contrary to the opinion of many, I shall, if G.o.d wills, make it clearer than the sun, at least to those who are not ignorant of mathematics.

"The order of the spheres is as follows: The first and lightest of all the spheres is that of the fixed stars, which includes itself and all others, and hence is motionless as the place in the universe to which the motion and position of all other stars is referred.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Walker Of The Worlds

Walker Of The Worlds

Walker Of The Worlds Chapter 2468 Exploding Outpost Author(s) : Grand_void_daoist View : 3,167,700
Star Odyssey

Star Odyssey

Star Odyssey Chapter 3180: Fertile Soil Author(s) : Along With The Wind, 随散飘风 View : 2,022,155
Level Up Legacy

Level Up Legacy

Level Up Legacy Chapter 1370 Cursed Knight Author(s) : MellowGuy View : 966,227
Hero of Darkness

Hero of Darkness

Hero of Darkness Chapter 1056 History of the Hero Author(s) : CrimsonWolfAuthor View : 1,023,543

A History of Science Volume II Part 2 summary

You're reading A History of Science. This manga has been translated by Updating. Author(s): Henry Smith Williams. Already has 622 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com