Home

Volcanic Islands Part 8

Volcanic Islands - novelonlinefull.com

You’re read light novel Volcanic Islands Part 8 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

SUPERFICIAL CALCAREOUS DEPOSIT.

A calcareous deposit on the summit of Bald Head, containing branched bodies, supposed by some authors to have been corals, has been celebrated by the descriptions of many distinguished voyagers. (I visited this hill, in company with Captain Fitzroy, and we came to a similar conclusion regarding these branching bodies.) It folds round and conceals irregular hummocks of granite, at the height of 600 feet above the level of the sea.

It varies much in thickness; where stratified, the beds are often inclined at high angles, even as much as at thirty degrees, and they dip in all directions. These beds are sometimes crossed by oblique and even-sided laminae. The deposit consists either of a fine, white calcareous powder, in which not a trace of structure can be discovered, or of exceedingly minute, rounded grains, of brown, yellowish, and purplish colours; both varieties being generally, but not always, mixed with small particles of quartz, and being cemented into a more or less perfect stone. The rounded calcareous grains, when heated in a slight degree, instantly lose their colours; in this and in every other respect, closely resembling those minute, equal- sized particles of sh.e.l.ls and corals, which at St. Helena have been drifted up the side of the mountains, and have thus been winnowed of all coa.r.s.er fragments. I cannot doubt that the coloured calcareous particles here have had a similar origin. The impalpable powder has probably been derived from the decay of the rounded particles; this certainly is possible, for on the coast of Peru, I have traced LARGE UNBROKEN sh.e.l.ls gradually falling into a substance as fine as powdered chalk. Both of the above-mentioned varieties of calcareous sandstone frequently alternate with, and blend into, thin layers of a hard substalagmitic rock, which, even when the stone on each side contains particles of quartz, is entirely free from them (I adopt this term from Lieutenant Nelson's excellent paper on the Bermuda Islands "Geolog. Trans." volume 5 page 106, for the hard, compact, cream- or brown- coloured stone, without any crystalline structure, which so often accompanies superficial calcareous acc.u.mulations. I have observed such superficial beds, coated with substalagmitic rock, at the Cape of Good Hope, in several parts of Chile, and over wide s.p.a.ces in La Plata and Patagonia. Some of these beds have been formed from decayed sh.e.l.ls, but the origin of the greater number is sufficiently obscure. The causes which determine water to dissolve lime, and then soon to redeposit it, are not, I think, known. The surface of the substalagmitic layers appears always to be corroded by the rain-water. As all the above-mentioned countries have a long dry season, compared with the rainy one, I should have thought that the presence of the substalagmitic was connected with the climate, had not Lieutenant Nelson found this substance forming under sea-water.

Disintegrated sh.e.l.l seems to be extremely soluble; of which I found good evidence, in a curious rock at Coquimbo in Chile, which consisted of small, pellucid, empty husks, cemented together. A series of specimens clearly showed that these husks had originally contained small rounded particles of sh.e.l.ls, which had been enveloped and cemented together by calcareous matter (as often happens on sea-beaches), and which subsequently had decayed, and been dissolved by water, that must have penetrated through the calcareous husks, without corroding them,--of which processes every stage could be seen.): hence we must suppose that these layers, as well as certain vein- like ma.s.ses, have been formed by rain dissolving the calcareous matter and re-precipitating it, as has happened at St. Helena. Each layer probably marks a fresh surface, when the, now firmly cemented, particles existed as loose sand. These layers are sometimes brecciated and re-cemented, as if they had been broken by the slipping of the sand when soft. I did not find a single fragment of a sea-sh.e.l.l; but bleached sh.e.l.ls of the Helix melo, an existing land species, abound in all the strata; and I likewise found another Helix, and the case of an Oniscus.

The branches are absolutely undistinguishable in shape from the broken and upright stumps of a thicket; their roots are often uncovered, and are seen to diverge on all sides; here and there a branch lies prostrate. The branches generally consist of the sandstone, rather firmer than the surrounding matter, with the central parts filled, either with friable, calcareous matter, or with a substalagmitic variety; this central part is also frequently penetrated by linear crevices, sometimes, though rarely, containing a trace of woody matter. These calcareous, branching bodies, appear to have been formed by fine calcareous matter being washed into the casts or cavities, left by the decay of branches and roots of thickets, buried under drifted sand. The whole surface of the hill is now undergoing disintegration, and hence the casts, which are compact and hard, are left projecting. In calcareous sand at the Cape of Good Hope, I found the casts, described by Abel, quite similar to these at Bald Head; but their centres are often filled with black carbonaceous matter not yet removed. It is not surprising, that the woody matter should have been almost entirely removed from the casts on Bald Head; for it is certain, that many centuries must have elapsed since the thickets were buried; at present, owing to the form and height of the narrow promontory, no sand is drifted up, and the whole surface, as I have remarked, is wearing away. We must, therefore, look back to a period when the land stood lower, of which the French naturalists (See M. Peron "Voyage" tome 1 page 204.) found evidence in upraised sh.e.l.ls of recent species, for the drifting on Bald Head of the calcareous and quartzose sand, and the consequent embedment of the vegetable remains.

There was only one appearance which at first made me doubt concerning the origin of the cast,--namely, that the finer roots from different stems sometimes became united together into upright plates or veins; but when the manner is borne in mind in which fine roots often fill up cracks in hard earth, and that these roots would decay and leave hollows, as well as the stems, there is no real difficulty in this case. Besides the calcareous branches from the Cape of Good Hope, I have seen casts, of exactly the same forms, from Madeira* and from Bermuda; at this latter place, the surrounding calcareous rocks, judging from the specimens collected by Lieutenant Nelson, are likewise similar, as is their subaerial formation.

Reflecting on the stratification of the deposit on Bald Head,--on the irregularly alternating layers of substalagmitic rock,--on the uniformly sized, and rounded particles, apparently of sea-sh.e.l.ls and corals,--on the abundance of land-sh.e.l.ls throughout the ma.s.s,--and finally, on the absolute resemblance of the calcareous casts, to the stumps, roots, and branches of that kind of vegetation, which would grow on sand-hillocks, I think there can be no reasonable doubt, notwithstanding the different opinion of some authors, that a true view of their origin has been here given.

*(Dr. J. Macaulay has fully described ("Edinb. New Phil. Journ." volume 29 page 350) the casts from Madeira. He considers (differently from Mr. Smith of Jordan Hill) these bodies to be corals, and the calcareous deposit to be of subaqueous origin. His arguments chiefly rest (for his remarks on their structure are vague) on the great quant.i.ty of the calcareous matter, and on the casts containing animal matter, as shown by their evolving ammonia. Had Dr. Macaulay seen the enormous ma.s.ses of rolled particles of sh.e.l.ls and corals on the beach of Ascension, and especially on coral-reefs; and had he reflected on the effects of long-continued, gentle winds, in drifting up the finer particles, he would hardly have advanced the argument of quant.i.ty, which is seldom trustworthy in geology. If the calcareous matter has originated from disintegrated sh.e.l.ls and corals, the presence of animal matter is what might have been expected. Mr. Anderson a.n.a.lysed for Dr.

Macaulay part of a cast, and he found it composed of:-- Carbonate of lime......73.15 Silica.................11.90 Phosphate of lime.......8.81 Animal matter...........4.25 Sulphate of lime......a trace 98.11)

Calcareous deposits, like these of King George's Sound, are of vast extent on the Australian sh.o.r.es. Dr. Fitton remarks, that "recent calcareous breccia (by which term all these deposits are included) was found during Baudin's voyage, over a s.p.a.ce of no less than twenty-five degrees of lat.i.tude and an equal extent of longitude, on the southern, western, and north-western coasts." (For ample details on this formation consult Dr.

Fitton "Appendix to Captain King's Voyage." Dr. Fitton is inclined to attribute a concretionary origin to the branching bodies: I may remark, that I have seen in beds of sand in La Plata cylindrical stems which no doubt thus originated; but they differed much in appearance from these at Bald Head, and the other places above specified.) It appears also from M.

Peron, with whose observations and opinions on the origin of the calcareous matter and branching casts mine entirely accord, that the deposit is generally much more continuous than near King George's Sound. At Swan River, Archdeacon Scott states that in one part it extends ten miles inland. ("Proceedings of the Geolog. Soc." volume 1 page 320.) Captain Wickham, moreover, informs me that during his late survey of the western coast, the bottom of the sea, wherever the vessel anch.o.r.ed, was ascertained, by crowbars being let down, to consist of white calcareous matter. Hence it seems that along this coast, as at Bermuda and at Keeling Atoll, submarine and subaerial deposits are contemporaneously in process of formation, from the disintegration of marine organic bodies. The extent of these deposits, considering their origin, is very striking; and they can be compared in this respect only with the great coral-reefs of the Indian and Pacific Oceans. In other parts of the world, for instance in South America, there are SUPERFICIAL calcareous deposits of great extent, in which not a trace of organic structure is discoverable; these observations would lead to the inquiry, whether such deposits may not, also, have been formed from disintegrated sh.e.l.ls and corals.

CAPE OF GOOD HOPE.

After the accounts given by Barrow, Carmichael, Basil Hall, and W.B. Clarke of the geology of this district, I shall confine myself to a few observations on the junction of the three princ.i.p.al formations. The fundamental rock is granite (In several places I observed in the granite, small dark-coloured b.a.l.l.s, composed of minute scales of black mica in a tough basis. In another place, I found crystals of black schorl radiating from a common centre. Dr. Andrew Smith found, in the interior parts of the country, some beautiful specimens of granite, with silvery mica radiating or rather branching, like moss, from central points. At the Geological Society, there are specimens of granite with crystallised feldspar branching and radiating in like manner.), overlaid by clay-slate: the latter is generally hard, and glossy from containing minute scales of mica; it alternates with, and pa.s.ses into, beds of slightly crystalline, feldspathic, slaty rock. This clay-slate is remarkable from being in some places (as on the Lion's Rump) decomposed, even to the depth of twenty feet, into a pale-coloured, sandstone-like rock, which has been mistaken, I believe, by some observers, for a separate formation. I was guided by Dr.

Andrew Smith to a fine junction at Green Point between the granite and clay-slate: the latter at the distance of a quarter of a mile from the spot, where the granite appears on the beach (though, probably, the granite is much nearer underground), becomes slightly more compact and crystalline.

At a less distance, some of the beds of clay-slate are of a h.o.m.ogeneous texture, and obscurely striped with different zones of colour, whilst others are obscurely spotted. Within a hundred yards of the first vein of granite, the clay-slate consists of several varieties; some compact with a tinge of purple, others glistening with numerous minute scales of mica and imperfectly crystallised feldspar; some obscurely granular, others porphyritic with small, elongated spots of a soft white mineral, which being easily corroded, gives to this variety a vesicular appearance. Close to the granite, the clay-slate is changed into a dark-coloured, laminated rock, having a granular fracture, which is due to imperfect crystals of feldspar, coated by minute, brilliant scales of mica.

The actual junction between the granitic and clay-slate districts extends over a width of about two hundred yards, and consists of irregular ma.s.ses and of numerous dikes of granite, entangled and surrounded by the clay- slate: most of the dikes range in a N.W. and S.E. line, parallel to the cleavage of the slate. As we leave the junction, thin beds, and lastly, mere films of the altered clay-slate are seen, quite isolated, as if floating, in the coa.r.s.ely crystallised granite; but although completely detached, they all retain traces of the uniform N.W. and S.E. cleavage.

This fact has been observed in other similar cases, and has been advanced by some eminent geologists (See M. Keilhau "Theory on Granite" translated in the "Edinburgh New Philosophical Journal" volume 24 page 402.), as a great difficulty on the ordinary theory, of granite having been injected whilst liquified; but if we reflect on the probable state of the lower surface of a laminated ma.s.s, like clay-slate, after having been violently arched by a body of molten granite, we may conclude that it would be full of fissures parallel to the planes of cleavage; and that these would be filled with granite, so that wherever the fissures were close to each other, mere parting layers or wedges of the slate would depend into the granite. Should, therefore, the whole body of rock afterwards become worn down and denuded, the lower ends of these dependent ma.s.ses or wedges of slate would be left quite isolated in the granite; yet they would retain their proper lines of cleavage, from having been united, whilst the granite was fluid, with a continuous covering of clay-slate.

Following, in company with Dr. A. Smith, the line of junction between the granite and the slate, as it stretched inland, in a S.E. direction, we came to a place, where the slate was converted into a fine-grained, perfectly characterised gneiss, composed of yellow-brown granular feldspar, of abundant black brilliant mica, and of few and thin laminae of quartz. From the abundance of the mica in this gneiss, compared with the small quant.i.ty and excessively minute scales, in which it exists in the glossy clay-slate, we must conclude, that it has been here formed by the metamorphic action--a circ.u.mstance doubted, under nearly similar circ.u.mstances, by some authors.

The laminae of the clay-slate are straight; and it was interesting to observe, that as they a.s.sumed the character of gneiss, they became undulatory with some of the smaller flexures angular, like the laminae of many true metamorphic schists.

SANDSTONE FORMATION.

This formation makes the most imposing feature in the geology of Southern Africa. The strata are in many parts horizontal, and attain a thickness of about two thousand feet. The sandstone varies in character; it contains little earthy matter, but is often stained with iron; some of the beds are very fine-grained and quite white; others are as compact and h.o.m.ogeneous as quartz rock. In some places I observed a breccia of quartz, with the fragments almost dissolved in a siliceous paste. Broad veins of quartz, often including large and perfect crystals, are very numerous; and it is evident in nearly all the strata, that silica has been deposited from solution in remarkable quant.i.ty. Many of the varieties of quartzite appeared quite like metamorphic rocks; but from the upper strata being as siliceous as the lower, and from the undisturbed junctions with the granite, which in many places can be examined, I can hardly believe that these sandstone-strata have been exposed to heat. (The Rev. W.B. Clarke, however, states, to my surprise ("Geolog. Proceedings" volume 3 page 422), that the sandstone in some parts is penetrated by granitic dikes: such dikes must belong to an epoch altogether subsequent to that when the molten granite acted on the clay-slate.) On the lines of junction between these two great formations, I found in several places the granite decayed to the depth of a few inches, and succeeded, either by a thin layer of ferruginous shale, or by four or five inches in thickness of the re-cemented crystals of the granite, on which the great pile of sandstone immediately rested.

Mr. Schomburgk has described ("Geographical Journal" volume 10 page 246.) a great sandstone formation in Northern Brazil, resting on granite, and resembling to a remarkable degree, in composition and in the external form of the land, this formation of the Cape of Good Hope. The sandstones of the great platforms of Eastern Australia, which also rest on granite, differ in containing more earthy and less siliceous matter. No fossil remains have been discovered in these three vast deposits. Finally, I may add that I did not see any boulders of far-transported rocks at the Cape of Good Hope, or on the eastern and western sh.o.r.es of Australia, or at Van Diemen's Land. In the northern island of New Zealand, I noticed some large blocks of greenstone, but whether their parent rock was far distant, I had no opportunity of determining.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Martial Peak

Martial Peak

Martial Peak Chapter 5802: Off You Go Author(s) : Momo,莫默 View : 15,182,883

Volcanic Islands Part 8 summary

You're reading Volcanic Islands. This manga has been translated by Updating. Author(s): Charles Darwin. Already has 720 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com