Visual Illusions - novelonlinefull.com
You’re read light novel Visual Illusions Part 10 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
Nature has these besides the great primary light-sources--the sun, the moon, the stars, and, we might say, the sky. She also has the advantage of overwhelming magnitudes.
These are only a few of the disadvantages under which the artist works, but they indicate that he must grasp any advantage here and there which he may. Knowledge cannot fail him; still, if he fears that it will take him out of his "dream world" and taint him with earthliness, let him ponder over da Vinci, Rembrandt, and such men. These men _knew_ many things. They possessed much knowledge and, after all, the latter is nothing more nor less than science when its facts are arranged in an orderly manner. If the arts are to speak "a n.o.ble and expressive language" despite the handicaps of the artist, knowledge cannot be drawn upon too deeply.
Perhaps in no other art are the workmen as little acquainted with their handicaps and with the scientific facts which would aid them as in painting. Painters, of course, may not agree as to this statement, but if they wish to see how much of the science of light, color, lighting, and vision they are unacquainted with, let them invade the book-shelves. If they think they know the facts of nature let them paint a given scene and then inquire of the scientist regarding the relative values (brightnesses) in the actual scene. They will usually be amazed to learn that they cannot paint the lights and shadows of nature excepting in the feeblest manner.
The range of contrast represented by their entire palette is many thousand times less than the range of values in nature. In fact exclusive of nature's primary light-sources, such as the sun, she sometimes exhibits a range of brightness in a landscape a million times greater than the painter can produce with black and white pigments. This suggests that the artist is justified in using any available means for overcoming the handicap and among his tools, visual illusions are perhaps the most powerful.
A painting in the broadest sense is an illusion, for it strives to present the three-dimensional world upon plane areas of two dimensions.
Through representation or imitation it creates an illusion. If the artist's sensibility has been capable of adequate selection, his art will transmit, by means of and through the truths of science, from the region of perception to the region of emotion. Science consists of knowing; art consists of doing. If the artist is familiar with the facts of light, color, lighting, and vision, he will possess knowledge that can aid him in overcoming the great obstacles which are ever-present. A glimpse of visual illusions should strengthen him in his resolution to depend upon visual perception, but he can utilize these very illusions. He can find a use for facts as well as anyone. Facts as well as experience will prepare him to do his work best.
The artist may suggest brilliant sunlight by means of deep shadow. The old painters gained color at the expense of light and therefore lowered the scale of color in their representations of nature. It is interesting to see how increasing knowledge, as centuries pa.s.sed, directed painters as it did others onward toward the truth. Turner was one of the first to abandon the older methods in an attempt to raise the scale of his paintings toward a brilliance more resembling nature. By doing this he was able to put color in shadows as well as in lights. Gradually paintings became more brilliant. Monet, Claude, and others worked toward this goal until the brightnesses of paintings reached the limits of pigments. The impressionists, in their desire to paint nature's light, introduced something which was nothing more nor less than science. All this time the true creative artist was introducing science--in fact, illusions--to produce the perfect illusion which was his goal. A survey of any representative paintings' gallery shows the result of the application of more and more knowledge, as the art of painting progressed through the centuries. Surely we cannot go back to the brown shadows and sombre landscapes of the past.
In the earliest art, in the efforts of children, in the wall-paintings of the Egyptians, and in j.a.panese representation of nature, the process is selective and not imitative. Certain things are chosen and everything else is discarded. In such art selection is carried to the extreme. Much of this simplicity was due to a lack of knowledge. Light and shade, or shading, was not introduced until science discovered and organized its facts. Quite in the same manner linear and aerial perspective made their appearances until in our present art the process of selection is complex.
In our paintings of today objects are modeled by light and shade; they are related by perspective; backgrounds and surroundings are carefully considered; the proper emphasis of light, shade and color are given to certain details. The present complexity provides unprecedented opportunities for the application of knowledge pertaining to illusions but it should be understood that this application tends only toward realism of external things. Idealism in art and realism of character and expression are accomplished by the same tools--pigments and brushes--as realism of objective details is attained and there is nothing mysterious in the masterpieces of this kind. Mystery in art as in other activities is merely lack of understanding due to inadequate knowledge. Mysteries of today become facts tomorrow. Science moves with certainty into the unknown, reaping and binding the facts and dropping them behind where they may be utilized by those who will.
The painter can imitate aerial perspective although many centuries elapsed before mankind was keen enough to note its presence in nature. The atmospheric haze diminishes the brightness of very bright objects and increases that of dark objects. It blurs the distant details and adds a tinge of blue or violet to the distance. In painting it is a powerful illusion which the painter has learned to employ.
The painter can accurately imitate mathematical or linear perspective but the art of early centuries does not exhibit this feature. In a painting a tremendously powerful illusion of the third dimension is obtained by diminishing the size of objects as they are represented in the distance.
Converging lines and the other manifold details of perspective are aiding the artist in his efforts toward the production of the great illusion of painting.
The painter cannot imitate focal perspective or binocular perspective. He can try to imitate the definition in the central portion of the visual field and the increased blurring toward the periphery. Focal perspective is not of much importance in painting, because it is scarcely perceptible at the distances at which paintings are usually viewed. However the absence of binocular perspective in painting does decrease the effectiveness of the illusion very markedly. For this reason a painting is a more successful illusion when viewed with one eye than with two eyes. Of course, in one of nature's scenes the converse is true because when viewing it with both eyes all the forms of perspective cooperate to the final end--the true impression of three dimensions.
The painter may imitate the light and shade of solid forms and thereby apparently model them. In this respect a remarkable illusion of solid form or of depth may be obtained. For example, a painted column may be made to appear circular in cross-section or a circle when properly shaded will appear to be a sphere. Both of these, of course, are pure illusions. Some stage paintings are remarkable illusions of depth, and their success depends chiefly upon linear perspective and shadows. However, the illusion which was so complete at a distance quite disappears at close range.
The inadequate range of brightnesses or values obtainable by means of pigments has already been discussed. The sky in a landscape may be thousands of times brighter than a deep shadow or a hole in the ground. A c.u.mulus cloud in the sky may be a hundred thousand times brighter than the deepest shadow. However, the artist must represent a landscape by means of a palette whose white is only about thirty times brighter than its black.
If the sun is considered we may have in a landscape a range of brightness represented by millions.
This ill.u.s.trates the pitiable weakness of pigments alone as representative media. Will not light _transmitted_ through media some day be utilized to overcome this inherent handicap of reflecting media? To what extent is the success of stained gla.s.s windows due to a lessening of this handicap? The range of brightness in this case may be represented by a black (non-transmitting) portion to the brightness of the background (artificial or sky) as seen through an area of clear gla.s.s. Transparencies have an inherent advantage over ordinary paintings in this respect and many effective results may be obtained with them even in photography.
It is interesting to study the effect of greatly increasing the range of values or brightnesses in paintings by utilizing non-uniform distributions of light. Let us take a given landscape painting. If a light-source be so placed that it is close to the brighter areas (perhaps clouds and sky near the sun) it will illuminate this brighter portion several times more intensely than the more distant darker portions of the picture (foreground of trees, underbrush, deep shadows, etc.). The addition to the effectiveness of the illusion is quite perceptible. This effect of non-uniform lighting may be carried to the extreme for a painting by making a positive lantern-slide (rather contrasty) of the painting and projecting this slide upon the painting in accurate superposition. Now if the painting is illuminated solely by the "lantern-slide" the range of contrast or brightness will be enormously increased. The lightest portions of the picture will now be illuminated by light pa.s.sing through the almost totally transparent portions of the slide and the darkest portions by light greatly reduced by pa.s.sing through the nearly opaque portions of the slide. The original range of contrast in the painting, perhaps twenty to one, is now increased perhaps to more than a thousand to one. This demonstration will be surprising to anyone and will emphasize a very important point to the painter.
The painter has at his disposal all the scientific facts of light, color, and vision. Many of these have been presented elsewhere,[9] and those pertaining to illusions have been discussed in preceding chapters. These need not be repeated here excepting a few for the purpose of reminding the reader of the wealth of material available to the painter and decorator.
Many tricks may be interjected into the foreground for their effect upon the background and vice versa. For example, a branch of a tree drooping in the foreground apparently close to the observer, if done well, will give a remarkable depth to a painting. Modeling of form may be effected to some extent by a judicious use of the "retiring" and "advancing" colors. This is one way to obtain the illusion of depth.
After-images play many subtle parts in painting. For example, in a painting where a gray-blue sky meets the horizon of a blue-green body of water, the involuntary eye-movements may produce a pinkish line just above the horizon. This is the after-image of the blue-green water creeping upward by eye-movements. Many vivid illusions of this character may be deliberately obtained by the artist. Some of the peculiar restless effects obtained in impressionistic painting (stippling of small areas with relatively pure hues) are due to contrasts and after-images.
A painting came to the author's notice in which several after-images of the sun, besides the image of the sun itself, were disposed in various positions. Their colors varied in the same manner as the after-image of the sun. Doubtless the painter strove to give the impression which one has on gazing at the sun. Whether or not this attempt was successful does not matter but it was gratifying to see the attempt made.
There are many interesting effects obtainable by judicious experimentation. For example, if a gray medium be sprayed upon a landscape in such a manner that the material dries in a very rough or diffusing surface some remarkable effects of fog and haze may be produced. While experimenting in this manner a very finely etched clear gla.s.s was placed over a landscape and the combined effect of diffusely reflected light and of the slight blurring was remarkable. By separating the etched gla.s.s from the painting a slight distance, a very good imitation "porcelain" was produced. The optical properties of varnishes vary and their effect varies considerably, depending upon the mode of application. These and many other details are available to the painter and decorator. An interesting example among many is a cellulose lacquer dyed with an ordinary yellow dye. The solution appears yellow by transmitted light or it will color a surface yellow. By spraying this solution on a metallic object such as a nickel-plated piece, in a manner that leaves the medium rough or diffusing, the effect is no longer merely a yellow but a remarkable l.u.s.tre resembling gilt. Quite in the same manner many effects of richness, depth of color, haziness, etc., are obtainable by the artist who is striving to produce a great illusion.
All the means for success which the painter possesses are also available to the decorator; however, the latter may utilize some of the illusions of line, form, irradiation, etc., which the architect encounters. The decorator's field may be considered to include almost all of the painter's and much of the architect's. This being the case, little s.p.a.ce will be given to this phase of the subject because painting and architecture are separately treated. The decorator should begin to realize more fully the great potentiality of lighting in creating moods or in giving expression to an interior. The psychology of light and the use of lighting as a mode of expression have barely been drawn upon by the decorator. Lighting has already been discussed so it will be pa.s.sed by at this point.
The practice of hanging pictures on walls which are brilliantly colored is open to criticism. There are galleries in existence where paintings are hung on brilliant green or rose walls. The changes in the appearance of the object due to these highly colored environments are easily demonstrated by viewing a piece of white paper pinned upon the wall. On the green wall, the white paper appears pinkish; on the rose wall, it appears bluish or greenish. A portrait or a picture in which there are areas of white or delicate tints is subject to considerable distortions in the appearance of its colors. Similarly, if a woman must have a colored background, it is well to choose one which will induce the more desirable tints in her appearance. The designer of gowns certainly must recognize these illusions of color which may be desirable or undesirable.
The lighting of a picture has already been mentioned, but the discussion was confined solely to distribution of light. The quality of the light (its spectral character) may have an enormous influence upon the painting.
In fact with the same painting many illusions may be produced by lighting.
In general, paintings are painted in daylight and they are not the same in appearance under ordinary artificial light. For this reason the artist is usually ent.i.tled to the preservation of the illusion as he completed it.
By using artificial daylight which has been available for some years, the painting appears as the artist gave it his last touch. Of course, it is quite legitimate to vary the quality of light in case the owner desires to do so, but the purpose here is to emphasize the fact that the quality of light is a powerful influence upon the appearance of the painting. The influence is not generally enough recognized and its magnitude is appreciated by relatively few persons.
All other considerations aside, a painting is best hung upon a colorless background and black velvet for this purpose yields remarkable results.
Gray velvet is better, when the appearance of the room is taken into consideration, as it must be. However, the influence of dark surroundings toward enhancing the illusion is well worth recognizing. In the case of a special picture or a special occasion, a painting may be exhibited in a booth--a huge shadow-box not unlike a show-window in which the light-sources are concealed. Such experiments yield many interesting data pertaining to the illusions which the painter strives to obtain.
[Ill.u.s.tration: Fig. 82.--Ill.u.s.trating the apparent distortion of a picture frame in which the grain of the wood is visible.]
Incidentally on viewing some picture frames in which the grain of the wood was noticeable, the frames did not appear to be strictly rectangular. The illusions were so strong that only by measuring the frames could one be convinced that they were truly rectangular and possessed straight sides.
Two of these are represented in Figs. 82 and 83. In the former, the horizontal sides appear bent upward in the middle and the two vertical sides appear bowed toward the right. In Fig. 83, the frame appears considerably narrower at the left end than at the right. Both these frames were represented in the original drawings by true rectangles.
Many illusions are to be seen in furniture and in other woodwork in which the grain is conspicuous. This appears to the author to be an objection in general to this kind of finish. In Fig. 84 there is reproduced a photograph of the end of a board which was plane or straight notwithstanding its warped, or bowed, appearance. The original photographs were placed so as to be related as shown in the figure. Various degrees of the illusion are evident. The reader will perhaps find it necessary to convince himself of the straightness of the horizontal edges by applying a straight edge. These are examples of the same illusion as shown in Figs.
37 to 40.
[Ill.u.s.tration: Fig. 83.--Another example similar to Fig. 82.]
[Ill.u.s.tration: Fig. 84.--From actual photographs of the end-grain of a board.]
Perhaps a brief statement regarding the modern _isms_ in art may be of interest. In considering some of the extreme examples, we must revise our idea that art is or should be always beautiful. The many definitions of art would lead us too far afield to discuss them here but in its most extended and popular sense, art may be considered to mean everything which we distinguish from nature. Certainly art need not be beautiful, although it does seem that the world would welcome the beautiful and would get along contentedly without art that is ugly or repulsive. The modern _isms_ must be viewed with consideration, for there are many impostors concealing their inabilities by flocking to these less understood fields.
However, there are many sincere workers--research artists--in the modern _isms_ and their works may best be described at present as experiments in the psychology of light, shade, and color. They have cast aside or reduced in importance some of the more familiar components such as realism and are striving more deeply to utilize the psychology of light and color. Some of them admit that they strive to paint through child's eyes and mind--free from experience, prejudice, and imitation. These need all the scientific knowledge which is available--and maybe more.
In closing this chapter, it appears necessary to remind the artist and others that it is far from the author's intention to subordinate the artist's sensibility to the scientific facts or tools. Art cannot be manufactured by means of formulae. This would not be true if we knew a great deal more than we do pertaining to the science of light, color, and vision. The artist's fine sensibility will always be the dominating necessity in the production of art. He must possess the ability to compose exquisitely; he must be able to look at nature through a special temperament; he must be gifted in eye and in hand; he must be master of unusual visual and intellectual processes. But knowledge will aid him as well as those in other activities. A superior acquaintance with scientific facts lifted past masters above their fellows and what helped Leonardo da Vinci, Rembrandt, Velasquez, Turner, Claude, Monet, and other masters will help artists of today. What would not those past masters have accomplished if they had available in their time the greater knowledge of the present!
XIII
ARCHITECTURE
Many illusions are found in architecture and, strangely enough, many of these were recognized long before painting developed beyond its primitive stages. The architecture of cla.s.sic Greece displays a highly developed knowledge of many geometrical illusions and the architects of those far-off centuries carefully worked out details for counteracting them.
Drawings reveal many illusions to the architect, but many are not predicted by them. The ever-changing relations of lines and forms in architecture as we vary our viewpoint introduce many illusions which may appear and disappear. No view of a group of buildings or of the components of a single structure can be free from optical illusions. We never see in the reality the same relations of lines, forms, colors, and brightnesses as indicated by the drawings or blue-prints. Perhaps this is one of the best reasons for justifying the construction of expensive models of our more pretentious structures.
No detailed account of the many architectural illusions will be attempted, for it is easy for the reader to see many of the possibilities suggested by preceding chapters. However, a few will be touched upon to reveal the magnitude of the illusory effect and to aid the observer in looking for or recognizing them, or purely for historical interest. In architecture the eye cannot be wholly satisfied by such tools as the level, the square, and the plumb-line. The eye is satisfied only when the _appearance_ is satisfactory. For the purpose of showing the extent of certain architectural illusions, the compensatory measures applied by the Greeks are excellent examples. These also reveal the remarkable application of science to architecture as compared with the scanty application in painting of the same period.
During the best period of Grecian art many refinements were applied in order to correct optical illusions. It would be interesting to know to what extent the magnitude of the illusions as they appeared to many persons were actually studied. The Parthenon of Athens affords an excellent example of the magnitude of the corrections which the designer thought necessary in order to satisfy the eye. The long lines of the architrave--the beam which surmounts the columns or extends from column to column--would appear to sag if it were actually straight. This is also true of the stylobate, or substructure of a colonnade, and of pediments and other features. These lines were often convex instead of being straight as the eye desires to see them.
In the Parthenon, the stylobate has an upward curvature of more than four inches on the sides of the edifice and of more than two and a half inches on the east and west fronts. Vertical features were made to incline inward in order to correct the common appearance of leaning outward at the top.
In the Parthenon, the axes of the columns are not vertical, but they are inclined inward nearly three inches. They are said also to be inclined toward each other to such a degree that they would meet at an alt.i.tude of one mile above the ground. The eleven-foot frieze and architrave is inclined inward about one and one-half inches.
In Fig. 85, _a_ represents the front of a temple as it should appear; _b_ represents its appearance (exaggerated) if it were actually built like _a_ without compensations for optical illusions; _c_ represents it as built and showing the physical corrections (exaggerated) in order that it may appear to the eye as _a_ does.
Tall columns if they are actually straight are likely to appear somewhat shrunken in the middle; therefore they are sometimes made slightly swollen in order to appear straight. This outward curvature of the profile is termed an entasis and in the Parthenon column, which is thirty-four feet in height, amounted to about three-fourths of an inch. In some early Grecian works, it is said that this correction was overdone but that its omission entirely is quite unsatisfactory. Some authorities appear to believe that an excellent compromise is found in the Parthenon columns.
[Ill.u.s.tration: Fig. 85.--Exaggerated illusions in architecture.]
One of the conditions which is responsible for certain illusions and has been compensated for on occasions is represented in Fig. 86. On the left are a series of squares of equal size placed in a vertical row. If these are large so that they might represent stories in a building they will appear to decrease in size from the bottom upward, because of the decreasing projection at the eye. This is obvious if the eye is considered to be at the point where the inclined lines meet. In order to compensate for the variation in visual angle, there must be a series of rectangles increasing considerably in height toward the top. The correction is shown in the ill.u.s.tration. It is stated that an inscription on an ancient temple was written in letters arranged vertically, and in order to make them appear of equal size they were actually increased in size toward the top according to the law represented in Fig. 86. Obviously a given correction would be correct only for one distance in a given plane.
[Ill.u.s.tration: Fig. 86.--Ill.u.s.trating the influence of visual angle upon apparent vertical height.]
In Chapter VIII the phenomenon of irradiation was discussed and various examples were presented. It exerts its influence in the arts as elsewhere.
Columns viewed against a background of white sky appear of smaller diameter than when they are viewed against a dark background. This is ill.u.s.trated in Fig. 87 where the white and the black columns are supposed to be equal in diameter.