Home

Treatise on Light Part 5

Treatise on Light - novelonlinefull.com

You’re read light novel Treatise on Light Part 5 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[Ill.u.s.tration]

But it must be shown how one can determine the point of contact I. Let there be drawn parallel to the line KT a line HF which touches the Ellipse HDE, and let this point of contact be at H. And having drawn a straight line along CH to meet KT at T, let there be imagined a plane pa.s.sing through the same CH and through CM (which I suppose to be the refraction of the perpendicular ray), which makes in the spheroid the elliptical section HME. It is certain that the plane which will pa.s.s through the straight line KT, and which will touch the spheroid, will touch it at a point in the Ellipse HME, according to the Lemma which will be demonstrated at the end of the Chapter. Now this point is necessarily the point I which is sought, since the plane drawn through TK can touch the spheroid at one point only. And this point I is easy to determine, since it is needful only to draw from the point T, which is in the plane of this Ellipse, the tangent TI, in the way shown previously. For the Ellipse HME is given, and its conjugate semi-diameters are CH and CM; because a straight line drawn through M, parallel to HE, touches the Ellipse HME, as follows from the fact that a plane taken through M, and parallel to the plane HDE, touches the spheroid at that point M, as is seen from Articles 27 and 23. For the rest, the position of this ellipse, with respect to the plane through the ray RC and through CK, is also given; from which it will be easy to find the position of CI, the refraction corresponding to the ray RC.

Now it must be noted that the same ellipse HME serves to find the refractions of any other ray which may be in the plane through RC and CK. Because every plane, parallel to the straight line HF, or TK, which will touch the spheroid, will touch it in this ellipse, according to the Lemma quoted a little before.

I have investigated thus, in minute detail, the properties of the irregular refraction of this Crystal, in order to see whether each phenomenon that is deduced from our hypothesis accords with that which is observed in fact. And this being so it affords no slight proof of the truth of our suppositions and principles. But what I am going to add here confirms them again marvellously. It is this: that there are different sections of this Crystal, the surfaces of which, thereby produced, give rise to refractions precisely such as they ought to be, and as I had foreseen them, according to the preceding Theory.

In order to explain what these sections are, let ABKF _be_ the princ.i.p.al section through the axis of the crystal ACK, in which there will also be the axis SS of a spheroidal wave of light spreading in the crystal from the centre C; and the straight line which cuts SS through the middle and at right angles, namely PP, will be one of the major diameters.



[Ill.u.s.tration: {Section ABKF}]

Now as in the natural section of the crystal, made by a plane parallel to two opposite faces, which plane is here represented by the line GG, the refraction of the surfaces which are produced by it will be governed by the hemi-spheroids GNG, according to what has been explained in the preceding Theory. Similarly, cutting the Crystal through NN, by a plane perpendicular to the parallelogram ABKF, the refraction of the surfaces will be governed by the hemi-spheroids NGN.

And if one cuts it through PP, perpendicularly to the said parallelogram, the refraction of the surfaces ought to be governed by the hemi-spheroids PSP, and so for others. But I saw that if the plane NN was almost perpendicular to the plane GG, making the angle NCG, which is on the side A, an angle of 90 degrees 40 minutes, the hemi-spheroids NGN would become similar to the hemi-spheroids GNG, since the planes NN and GG were equally inclined by an angle of 45 degrees 20 minutes to the axis SS. In consequence it must needs be, if our theory is true, that the surfaces which the section through NN produces should effect the same refractions as the surfaces of the section through GG. And not only the surfaces of the section NN but all other sections produced by planes which might be inclined to the axis at an angle equal to 45 degrees 20 minutes. So that there are an infinitude of planes which ought to produce precisely the same refractions as the natural surfaces of the crystal, or as the section parallel to any one of those surfaces which are made by cleavage.

I saw also that by cutting it by a plane taken through PP, and perpendicular to the axis SS, the refraction of the surfaces ought to be such that the perpendicular ray should suffer thereby no deviation; and that for oblique rays there would always be an irregular refraction, differing from the regular, and by which objects placed beneath the crystal would be less elevated than by that other refraction.

That, similarly, by cutting the crystal by any plane through the axis SS, such as the plane of the figure is, the perpendicular ray ought to suffer no refraction; and that for oblique rays there were different measures for the irregular refraction according to the situation of the plane in which the incident ray was.

Now these things were found in fact so; and, after that, I could not doubt that a similar success could be met with everywhere. Whence I concluded that one might form from this crystal solids similar to those which are its natural forms, which should produce, at all their surfaces, the same regular and irregular refractions as the natural surfaces, and which nevertheless would cleave in quite other ways, and not in directions parallel to any of their faces. That out of it one would be able to fashion pyramids, having their base square, pentagonal, hexagonal, or with as many sides as one desired, all the surfaces of which should have the same refractions as the natural surfaces of the crystal, except the base, which will not refract the perpendicular ray. These surfaces will each make an angle of 45 degrees 20 minutes with the axis of the crystal, and the base will be the section perpendicular to the axis.

That, finally, one could also fashion out of it triangular prisms, or prisms with as many sides as one would, of which neither the sides nor the bases would refract the perpendicular ray, although they would yet all cause double refraction for oblique rays. The cube is included amongst these prisms, the bases of which are sections perpendicular to the axis of the crystal, and the sides are sections parallel to the same axis.

From all this it further appears that it is not at all in the disposition of the layers of which this crystal seems to be composed, and according to which it splits in three different senses, that the cause resides of its irregular refraction; and that it would be in vain to wish to seek it there.

But in order that any one who has some of this stone may be able to find, by his own experience, the truth of what I have just advanced, I will state here the process of which I have made use to cut it, and to polish it. Cutting is easy by the slicing wheels of lapidaries, or in the way in which marble is sawn: but polishing is very difficult, and by employing the ordinary means one more often depolishes the surfaces than makes them lucent.

After many trials, I have at last found that for this service no plate of metal must be used, but a piece of mirror gla.s.s made matt and depolished. Upon this, with fine sand and water, one smoothes the crystal little by little, in the same way as spectacle gla.s.ses, and polishes it simply by continuing the work, but ever reducing the material. I have not, however, been able to give it perfect clarity and transparency; but the evenness which the surfaces acquire enables one to observe in them the effects of refraction better than in those made by cleaving the stone, which always have some inequality.

Even when the surface is only moderately smoothed, if one rubs it over with a little oil or white of egg, it becomes quite transparent, so that the refraction is discerned in it quite distinctly. And this aid is specially necessary when it is wished to polish the natural surfaces to remove the inequalities; because one cannot render them lucent equally with the surfaces of other sections, which take a polish so much the better the less nearly they approximate to these natural planes.

Before finishing the treatise on this Crystal, I will add one more marvellous phenomenon which I discovered after having written all the foregoing. For though I have not been able till now to find its cause, I do not for that reason wish to desist from describing it, in order to give opportunity to others to investigate it. It seems that it will be necessary to make still further suppositions besides those which I have made; but these will not for all that cease to keep their probability after having been confirmed by so many tests.

[Ill.u.s.tration]

The phenomenon is, that by taking two pieces of this crystal and applying them one over the other, or rather holding them with a s.p.a.ce between the two, if all the sides of one are parallel to those of the other, then a ray of light, such as AB, is divided into two in the first piece, namely into BD and BC, following the two refractions, regular and irregular. On penetrating thence into the other piece each ray will pa.s.s there without further dividing itself in two; but that one which underwent the regular refraction, as here DG, will undergo again only a regular refraction at GH; and the other, CE, an irregular refraction at EF. And the same thing occurs not only in this disposition, but also in all those cases in which the princ.i.p.al section of each of the pieces is situated in one and the same plane, without it being needful for the two neighbouring surfaces to be parallel. Now it is marvellous why the rays CE and DG, incident from the air on the lower crystal, do not divide themselves the same as the first ray AB. One would say that it must be that the ray DG in pa.s.sing through the upper piece has lost something which is necessary to move the matter which serves for the irregular refraction; and that likewise CE has lost that which was necessary to move the matter which serves for regular refraction: but there is yet another thing which upsets this reasoning. It is that when one disposes the two crystals in such a way that the planes which const.i.tute the princ.i.p.al sections intersect one another at right angles, whether the neighbouring surfaces are parallel or not, then the ray which has come by the regular refraction, as DG, undergoes only an irregular refraction in the lower piece; and on the contrary the ray which has come by the irregular refraction, as CE, undergoes only a regular refraction.

But in all the infinite other positions, besides those which I have just stated, the rays DG, CE, divide themselves anew each one into two, by refraction in the lower crystal so that from the single ray AB there are four, sometimes of equal brightness, sometimes some much less bright than others, according to the varying agreement in the positions of the crystals: but they do not appear to have all together more light than the single ray AB.

When one considers here how, while the rays CE, DG, remain the same, it depends on the position that one gives to the lower piece, whether it divides them both in two, or whether it does not divide them, and yet how the ray AB above is always divided, it seems that one is obliged to conclude that the waves of light, after having pa.s.sed through the first crystal, acquire a certain form or disposition in virtue of which, when meeting the texture of the second crystal, in certain positions, they can move the two different kinds of matter which serve for the two species of refraction; and when meeting the second crystal in another position are able to move only one of these kinds of matter. But to tell how this occurs, I have hitherto found nothing which satisfies me.

Leaving then to others this research, I pa.s.s to what I have to say touching the cause of the extraordinary figure of this crystal, and why it cleaves easily in three different senses, parallel to any one of its surfaces.

There are many bodies, vegetable, mineral, and congealed salts, which are formed with certain regular angles and figures. Thus among flowers there are many which have their leaves disposed in ordered polygons, to the number of 3, 4, 5, or 6 sides, but not more. This well deserves to be investigated, both as to the polygonal figure, and as to why it does not exceed the number 6.

Rock Crystal grows ordinarily in hexagonal bars, and diamonds are found which occur with a square point and polished surfaces. There is a species of small flat stones, piled up directly upon one another, which are all of pentagonal figure with rounded angles, and the sides a little folded inwards. The grains of gray salt which are formed from sea water affect the figure, or at least the angle, of the cube; and in the congelations of other salts, and in that of sugar, there are found other solid angles with perfectly flat faces. Small snowflakes almost always fall in little stars with 6 points, and sometimes in hexagons with straight sides. And I have often observed, in water which is beginning to freeze, a kind of flat and thin foliage of ice, the middle ray of which throws out branches inclined at an angle of 60 degrees. All these things are worthy of being carefully investigated to ascertain how and by what artifice nature there operates. But it is not now my intention to treat fully of this matter. It seems that in general the regularity which occurs in these productions comes from the arrangement of the small invisible equal particles of which they are composed. And, coming to our Iceland Crystal, I say that if there were a pyramid such as ABCD, composed of small rounded corpuscles, not spherical but flattened spheroids, such as would be made by the rotation of the ellipse GH around its lesser diameter EF (of which the ratio to the greater diameter is very nearly that of 1 to the square root of 8)--I say that then the solid angle of the point D would be equal to the obtuse and equilateral angle of this Crystal. I say, further, that if these corpuscles were lightly stuck together, on breaking this pyramid it would break along faces parallel to those that make its point: and by this means, as it is easy to see, it would produce prisms similar to those of the same crystal as this other figure represents. The reason is that when broken in this fashion a whole layer separates easily from its neighbouring layer since each spheroid has to be detached only from the three spheroids of the next layer; of which three there is but one which touches it on its flattened surface, and the other two at the edges. And the reason why the surfaces separate sharp and polished is that if any spheroid of the neighbouring surface would come out by attaching itself to the surface which is being separated, it would be needful for it to detach itself from six other spheroids which hold it locked, and four of which press it by these flattened surfaces. Since then not only the angles of our crystal but also the manner in which it splits agree precisely with what is observed in the a.s.semblage composed of such spheroids, there is great reason to believe that the particles are shaped and ranged in the same way.

[Ill.u.s.tration: {Pyramid and section of spheroids}]

There is even probability enough that the prisms of this crystal are produced by the breaking up of pyramids, since Mr. Bartholinus relates that he occasionally found some pieces of triangularly pyramidal figure. But when a ma.s.s is composed interiorly only of these little spheroids thus piled up, whatever form it may have exteriorly, it is certain, by the same reasoning which I have just explained, that if broken it would produce similar prisms. It remains to be seen whether there are other reasons which confirm our conjecture, and whether there are none which are repugnant to it.

[Ill.u.s.tration: {paralleloid arrangement of spheroids with planes of potential cleavage}]

It may be objected that this crystal, being so composed, might be capable of cleavage in yet two more fashions; one of which would be along planes parallel to the base of the pyramid, that is to say to the triangle ABC; the other would be parallel to a plane the trace of which is marked by the lines GH, HK, KL. To which I say that both the one and the other, though practicable, are more difficult than those which were parallel to any one of the three planes of the pyramid; and that therefore, when striking on the crystal in order to break it, it ought always to split rather along these three planes than along the two others. When one has a number of spheroids of the form above described, and ranges them in a pyramid, one sees why the two methods of division are more difficult. For in the case of that division which would be parallel to the base, each spheroid would be obliged to detach itself from three others which it touches upon their flattened surfaces, which hold more strongly than the contacts at the edges. And besides that, this division will not occur along entire layers, because each of the spheroids of a layer is scarcely held at all by the 6 of the same layer that surround it, since they only touch it at the edges; so that it adheres readily to the neighbouring layer, and the others to it, for the same reason; and this causes uneven surfaces. Also one sees by experiment that when grinding down the crystal on a rather rough stone, directly on the equilateral solid angle, one verily finds much facility in reducing it in this direction, but much difficulty afterwards in polishing the surface which has been flattened in this manner.

As for the other method of division along the plane GHKL, it will be seen that each spheroid would have to detach itself from four of the neighbouring layer, two of which touch it on the flattened surfaces, and two at the edges. So that this division is likewise more difficult than that which is made parallel to one of the surfaces of the crystal; where, as we have said, each spheroid is detached from only three of the neighbouring layer: of which three there is one only which touches it on the flattened surface, and the other two at the edges only.

However, that which has made me know that in the crystal there are layers in this last fashion, is that in a piece weighing half a pound which I possess, one sees that it is split along its length, as is the above-mentioned prism by the plane GHKL; as appears by colours of the Iris extending throughout this whole plane although the two pieces still hold together. All this proves then that the composition of the crystal is such as we have stated. To which I again add this experiment; that if one pa.s.ses a knife sc.r.a.ping along any one of the natural surfaces, and downwards as it were from the equilateral obtuse angle, that is to say from the apex of the pyramid, one finds it quite hard; but by sc.r.a.ping in the opposite sense an incision is easily made. This follows manifestly from the situation of the small spheroids; over which, in the first manner, the knife glides; but in the other manner it seizes them from beneath almost as if they were the scales of a fish.

I will not undertake to say anything touching the way in which so many corpuscles all equal and similar are generated, nor how they are set in such beautiful order; whether they are formed first and then a.s.sembled, or whether they arrange themselves thus in coming into being and as fast as they are produced, which seems to me more probable. To develop truths so recondite there would be needed a knowledge of nature much greater than that which we have. I will add only that these little spheroids could well contribute to form the spheroids of the waves of light, here above supposed, these as well as those being similarly situated, and with their axes parallel.

_Calculations which have been supposed in this Chapter_.

Mr. Bartholinus, in his treatise of this Crystal, puts at 101 degrees the obtuse angles of the faces, which I have stated to be 101 degrees 52 minutes. He states that he measured these angles directly on the crystal, which is difficult to do with ultimate exact.i.tude, because the edges such as CA, CB, in this figure, are generally worn, and not quite straight. For more certainty, therefore, I preferred to measure actually the obtuse angle by which the faces CBDA, CBVF, are inclined to one another, namely the angle OCN formed by drawing CN perpendicular to FV, and CO perpendicular to DA. This angle OCN I found to be 105 degrees; and its supplement CNP, to be 75 degrees, as it should be.

[Ill.u.s.tration]

To find from this the obtuse angle BCA, I imagined a sphere having its centre at C, and on its surface a spherical triangle, formed by the intersection of three planes which enclose the solid angle C. In this equilateral triangle, which is ABF in this other figure, I see that each of the angles should be 105 degrees, namely equal to the angle OCN; and that each of the sides should be of as many degrees as the angle ACB, or ACF, or BCF. Having then drawn the arc FQ perpendicular to the side AB, which it divides equally at Q, the triangle FQA has a right angle at Q, the angle A 105 degrees, and F half as much, namely 52 degrees 30 minutes; whence the hypotenuse AF is found to be 101 degrees 52 minutes. And this arc AF is the measure of the angle ACF in the figure of the crystal.

[Ill.u.s.tration]

In the same figure, if the plane CGHF cuts the crystal so that it divides the obtuse angles ACB, MHV, in the middle, it is stated, in Article 10, that the angle CFH is 70 degrees 57 minutes. This again is easily shown in the same spherical triangle ABF, in which it appears that the arc FQ is as many degrees as the angle GCF in the crystal, the supplement of which is the angle CFH. Now the arc FQ is found to be 109 degrees 3 minutes. Then its supplement, 70 degrees 57 minutes, is the angle CFH.

It was stated, in Article 26, that the straight line CS, which in the preceding figure is CH, being the axis of the crystal, that is to say being equally inclined to the three sides CA, CB, CF, the angle GCH is 45 degrees 20 minutes. This is also easily calculated by the same spherical triangle. For by drawing the other arc AD which cuts BF equally, and intersects FQ at S, this point will be the centre of the triangle. And it is easy to see that the arc SQ is the measure of the angle GCH in the figure which represents the crystal. Now in the triangle QAS, which is right-angled, one knows also the angle A, which is 52 degrees 30 minutes, and the side AQ 50 degrees 56 minutes; whence the side SQ is found to be 45 degrees 20 minutes.

In Article 27 it was required to show that PMS being an ellipse the centre of which is C, and which touches the straight line MD at M so that the angle MCL which CM makes with CL, perpendicular on DM, is 6 degrees 40 minutes, and its semi-minor axis CS making with CG (which is parallel to MD) an angle GCS of 45 degrees 20 minutes, it was required to show, I say, that, CM being 100,000 parts, PC the semi-major diameter of this ellipse is 105,032 parts, and CS, the semi-minor diameter, 93,410.

Let CP and CS be prolonged and meet the tangent DM at D and Z; and from the point of contact M let MN and MO be drawn as perpendiculars to CP and CS. Now because the angles SCP, GCL, are right angles, the angle PCL will be equal to GCS which was 45 degrees 20 minutes. And deducting the angle LCM, which is 6 degrees 40 minutes, from LCP, which is 45 degrees 20 minutes, there remains MCP, 38 degrees 40 minutes. Considering then CM as a radius of 100,000 parts, MN, the sine of 38 degrees 40 minutes, will be 62,479. And in the right-angled triangle MND, MN will be to ND as the radius of the Tables is to the tangent of 45 degrees 20 minutes (because the angle NMD is equal to DCL, or GCS); that is to say as 100,000 to 101,170: whence results ND 63,210. But NC is 78,079 of the same parts, CM being 100,000, because NC is the sine of the complement of the angle MCP, which was 38 degrees 40 minutes. Then the whole line DC is 141,289; and CP, which is a mean proportional between DC and CN, since MD touches the Ellipse, will be 105,032.

[Ill.u.s.tration]

Similarly, because the angle OMZ is equal to CDZ, or LCZ, which is 44 degrees 40 minutes, being the complement of GCS, it follows that, as the radius of the Tables is to the tangent of 44 degrees 40 minutes, so will OM 78,079 be to OZ 77,176. But OC is 62,479 of these same parts of which CM is 100,000, because it is equal to MN, the sine of the angle MCP, which is 38 degrees 40 minutes. Then the whole line CZ is 139,655; and CS, which is a mean proportional between CZ and CO will be 93,410.

At the same place it was stated that GC was found to be 98,779 parts.

To prove this, let PE be drawn in the same figure parallel to DM, and meeting CM at E. In the right-angled triangle CLD the side CL is 99,324 (CM being 100,000), because CL is the sine of the complement of the angle LCM, which is 6 degrees 40 minutes. And since the angle LCD is 45 degrees 20 minutes, being equal to GCS, the side LD is found to be 100,486: whence deducting ML 11,609 there will remain MD 88,877.

Now as CD (which was 141,289) is to DM 88,877, so will CP 105,032 be to PE 66,070. But as the rectangle MEH (or rather the difference of the squares on CM and CE) is to the square on MC, so is the square on PE to the square on C_g_; then also as the difference of the squares on DC and CP to the square on CD, so also is the square on PE to the square on _g_C. But DP, CP, and PE are known; hence also one knows GC, which is 98,779.

_Lemma which has been supposed_.

If a spheroid is touched by a straight line, and also by two or more planes which are parallel to this line, though not parallel to one another, all the points of contact of the line, as well as of the planes, will be in one and the same ellipse made by a plane which pa.s.ses through the centre of the spheroid.

Let LED be the spheroid touched by the line BM at the point B, and also by the planes parallel to this line at the points O and A. It is required to demonstrate that the points B, O, and A are in one and the same Ellipse made in the spheroid by a plane which pa.s.ses through its centre.

[Ill.u.s.tration]

Through the line BM, and through the points O and A, let there be drawn planes parallel to one another, which, in cutting the spheroid make the ellipses LBD, POP, QAQ; which will all be similar and similarly disposed, and will have their centres K, N, R, in one and the same diameter of the spheroid, which will also be the diameter of the ellipse made by the section of the plane that pa.s.ses through the centre of the spheroid, and which cuts the planes of the three said Ellipses at right angles: for all this is manifest by proposition 15 of the book of Conoids and Spheroids of Archimedes. Further, the two latter planes, which are drawn through the points O and A, will also, by cutting the planes which touch the spheroid in these same points, generate straight lines, as OH and AS, which will, as is easy to see, be parallel to BM; and all three, BM, OH, AS, will touch the Ellipses LBD, POP, QAQ in these points, B, O, A; since they are in the planes of these ellipses, and at the same time in the planes which touch the spheroid. If now from these points B, O, A, there are drawn the straight lines BK, ON, AR, through the centres of the same ellipses, and if through these centres there are drawn also the diameters LD, PP, QQ, parallel to the tangents BM, OH, AS; these will be conjugate to the aforesaid BK, ON, AR. And because the three ellipses are similar and similarly disposed, and have their diameters LD, PP, QQ parallel, it is certain that their conjugate diameters BK, ON, AR, will also be parallel. And the centres K, N, R being, as has been stated, in one and the same diameter of the spheroid, these parallels BK, ON, AR will necessarily be in one and the same plane, which pa.s.ses through this diameter of the spheroid, and, in consequence, the points R, O, A are in one and the same ellipse made by the intersection of this plane. Which was to be proved. And it is manifest that the demonstration would be the same if, besides the points O, A, there had been others in which the spheroid had been touched by planes parallel to the straight line BM.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Doomsday Wonderland

Doomsday Wonderland

Doomsday Wonderland Chapter 1655: Quite Unaccustomed Author(s) : 须尾俱全, Beards And Tails View : 1,227,509
The Hitting Zone

The Hitting Zone

The Hitting Zone Chapter 1194: V4 ch42 Author(s) : Half_empty View : 770,175
My Girlfriend is a Zombie

My Girlfriend is a Zombie

My Girlfriend is a Zombie Chapter 785: Showing Presence Author(s) : Dark Litchi, 黑暗荔枝, Dark Lychee View : 2,262,846
The New Gate

The New Gate

The New Gate Book 21: Chapter 2 (7) Author(s) : Kazanami Shinogi View : 116,011
Emperor’s Domination

Emperor’s Domination

Emperor’s Domination Chapter 6172: Think Too Highly Of Yourself Author(s) : Yan Bi Xiao Sheng,厌笔萧生 View : 17,803,277
Martial God Asura

Martial God Asura

Martial God Asura Chapter 6102: The Vanished Luck Saint Realm Reappears Author(s) : Kindhearted Bee,Shan Liang de Mi Feng,善良的蜜蜂 View : 57,129,215

Treatise on Light Part 5 summary

You're reading Treatise on Light. This manga has been translated by Updating. Author(s): Christiaan Huygens. Already has 609 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com