Home

The Power of Movement in Plants Part 8

The Power of Movement in Plants - novelonlinefull.com

You’re read light novel The Power of Movement in Plants Part 8 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

The circ.u.mnutating movements of arched hypocotyls and epicotyls can hardly fail to aid them in breaking through the ground, if this be damp and soft; though no doubt their emergence depends mainly on the force exerted by their longitudinal growth. Although the arch circ.u.mnutates only to a slight extent and probably with little force, yet it is able to move the soil near the surface, though it may not be able to do so at a moderate depth. A pot with seeds of Solanum palinacanthum, the tall arched hypocotyls of which had emerged and were growing rather slowly, was covered with fine argillaceous sand kept damp, and this at first closely surrounded the bases of the arches; but soon a narrow open crack was formed round each of them, which could be accounted for only by their having pushed away the sand on all sides; for no such cracks surrounded some little sticks and pins which had been driven into the sand. It has already been stated that the cotyledons of Phalaris and Avena, the plumules of Asparagus and the hypocotyls of Bra.s.sica, were likewise able to displace the same kind of sand, either whilst simply circ.u.mnutating or whilst bending towards a lateral light.

As long as an arched hypocotyl or epicotyl remains buried beneath the ground, the two legs cannot separate from one another, except to a slight extent from the yielding of the soil; but as soon as the arch rises above the ground, or at an earlier period if [page 101]

the pressure of the surrounding earth be artificially removed, the arch immediately begins to straighten itself. This no doubt is due to growth along the whole inner surface of both legs of the arch; such growth being checked or prevented, as long as the two legs of the arch are firmly pressed together. When the earth is removed all round an arch and the two legs are tied together at their bases, the growth on the under side of the crown causes it after a time to become much flatter and broader than naturally occurs. The straightening process consists of a modified form of circ.u.mnutation, for the lines described during this process (as with the hypocotyl of Bra.s.sica, and the epicotyls of Vicia and Corylus) were often plainly zigzag and sometimes looped. After hypocotyls or epicotyls have emerged from the ground, they quickly become perfectly straight. No trace is left of their former abrupt curvature, excepting in the case of Allium cepa, in which the cotyledon rarely becomes quite straight, owing to the protuberance developed on the crown of the arch.

The increased growth along the inner surface of the arch which renders it straight, apparently begins in the basal leg or that which is united to the radicle; for this leg, as we often observed, is first bowed backwards from the other leg. This movement facilitates the withdrawal of the tip of the epicotyl or of the cotyledons, as the case may be, from within the seed-coats and from the ground. But the cotyledons often emerge from the ground still tightly enclosed within the seed-coats, which apparently serve to protect them. The seed-coats are afterwards ruptured and cast off by the swelling of the closely conjoined cotyledons, and not by any movement or their separation from one another.

Nevertheless, in some few cases, especially with the [page 102]

Cucurbitaceae, the seed-coats are ruptured by a curious contrivance, described by M. Flahault.* A heel or peg is developed on one side of the summit of the radicle or base of the hypocotyl; and this holds down the lower half of the seed-coats (the radicle being fixed into the ground) whilst the continued growth of the arched hypocotyl forced upwards the upper half, and tears asunder the seed-coats at one end, and the cotyledons are then easily withdrawn.

Fig. 62. Cucurbita ovifera: germinating seed, showing the heel or peg projecting on one side from summit of radicle and holding down lower tip of seed-coats, which have been partially ruptured by the growth of the arched hypocotyl.

The accompanying figure (Fig. 62) will render this description intelligible. Forty-one seeds of Cucurbita ovifera were laid on friable peat and were covered by a layer about an inch in thickness, not much pressed down, so that the cotyledons in being dragged up were subjected to very little friction, yet forty of them came up naked, the seed-coats being left buried in the peat. This was certainly due to the action of the peg, for when it was prevented from acting, the cotyledons, as we shall presently see, were lifted up still enclosed in their seed-coats. They were, however, cast off in the course of two or three days by the swelling of the cotyledons. Until this occurs light is excluded, and the cotyledons cannot decompose carbonic acid; but no one probably would have thought that the advantage thus gained by a little earlier cast-

* 'Bull. Soc. Bot. de France,' tom. xxiv. 1877, p. 201.

[page 103]

ing off of the seed-coats would be sufficient to account for the development of the peg. Yet according to M. Flahault, seedlings which have been prevented from casting their seed-coats whilst beneath the ground, are inferior to those which have emerged with their cotyledons naked and ready to act.

The peg is developed with extraordinary rapidity; for it could only just be distinguished in two seedlings, having radicles .35 inch in length, but after an interval of only 24 hours was well developed in both. It is formed, according to Flahault, by the enlargement of the layers of the cortical parenchyma at the base of the hypocotyl. If, however, we judge by the effects of a solution of permanganate of pota.s.sium, it is developed on the exact line of junction between the hypocotyl and radicle; for the flat lower surface, as well as the edges, were coloured brown like the radicle; whilst the upper slightly inclined surface was left uncoloured like the hypocotyl, excepting indeed in one out of 33 immersed seedlings in which a large part of the upper surface was coloured brown. Secondary roots sometimes spring from the lower surface of the peg, which thus seems in all respects to partake of the nature of the radicle. The peg is always developed on the side which becomes concave by the arching of the hypocotyl; and it would be of no service if it were formed on any other side. It is also always developed with the flat lower side, which, as just stated, forms a part of the radicle, at right angles to it, and in a horizontal plane. This fact was clearly shown by burying some of the thin flat seeds in the same position as in Fig. 62, excepting that they were not laid on their flat broad sides, but with one edge downwards. Nine seeds were thus planted, and the peg was developed in the [page 104]

same position, relatively to the radicle, as in the figure; consequently it did not rest on the flat tip of the lower half of the seed-coats, but was inserted like a wedge between the two tips. As the arched hypocotyl grew upwards it tended to draw up the whole seed, and the peg necessarily rubbed against both tips, but did not hold either down. The result was, that the cotyledons of five out of the nine seeds thus placed were raised above the ground still enclosed within their seed-coats. Four seeds were buried with the end from which the radicle protrudes pointing vertically downwards, and owing to the peg being always developed in the same position, its apex alone came into contact with, and rubbed against the tip on one side; the result was, that the cotyledons of all four emerged still within their seed-coats. These cases show us how the peg acts in co-ordination with the position which the flat, thin, broad seeds would almost always occupy when naturally sown. When the tip of the lower half of the seed-coats was cut off, Flahault found (as we did likewise) that the peg could not act, since it had nothing to press on, and the cotyledons were raised above the ground with their seed-coats not cast off. Lastly, nature shows us the use of the peg; for in the one Cucurbitaceous genus known to us, in which the cotyledons are hypogean and do not cast their seed-coats, namely, Megarrhiza, there is no vestige of a peg. This structure seems to be present in most of the other genera in the family, judging from Flahault's statements' we found it well-developed and properly acting in Trichosanthes anguina, in which we hardly expected to find it, as the cotyledons are somewhat thick and fleshy. Few cases can be advanced of a structure better adapted for a special purpose than the present one.

[page 105]

With Mimosa pudica the radicle protrudes from a small hole in the sharp edge of the seed; and on its summit, where united with the hypocotyl, a transverse ridge is developed at an early age, which clearly aids in splitting the tough seed-coats; but it does not aid in casting them off, as this is subsequently effected by the swelling of the cotyledons after they have been raised above the ground. The ridge or heel therefore acts rather differently from that of Cucurbita. Its lower surface and the edges were coloured brown by the permanganate of pota.s.sium, but not the upper surface.

It is a singular fact that after the ridge has done its work and has escaped from the seed-coats, it is developed into a frill all round the summit of the radicle.*

At the base of the enlarged hypocotyl of Abronia umbellata, where it blends into the radicle, there is a projection or heel which varies in shape, but its outline is too angular in our former figure (Fig. 61). The radicle first protrudes from a small hole at one end of the tough, leathery, winged fruit. At this period the upper part of the radicle is packed within the fruit parallel to the hypocotyl, and the single cotyledon is doubled back parallel to the latter. The swelling of these three parts, and especially the rapid development of the thick heel between the hypocotyl and radicle at the point where they are doubled, ruptures the tough fruit at the upper end and allows the arched hypocotyl to emerge; and this seems to be the function of the heel. A seed was cut out of the fruit and

* Our attention was called to this case by a brief statement by n.o.bbe in his 'Handbuch der Samenkunde,' 1876, p. 215, where a figure is also given of a seedling of Martynia with a heel or ridge at the junction of the radicle and hypocotyl. This seed possesses a very hard and tough coat, and would be likely to require aid in bursting and freeing the cotyledons.

[page 106]

allowed to germinate in damp air, and now a thin flat disc was developed all round the base of the hypocotyl and grew to an extraordinary breadth, like the frill described under Mimosa, but somewhat broader. Flahault says that with Mirabilis, a member of the same family with Abronia, a heel or collar is developed all round the base of the hypocotyl, but more on one side than on the other; and that it frees the cotyledons from their seed-coats. We observed only old seeds, and these were ruptured by the absorption of moisture, independently of any aid from the heel and before the protrusion of the radicle; but it does not follow from our experience that fresh and tough fruits would behave in a like manner.

In concluding this section of the present chapter it may be convenient to summarise, under the form of an ill.u.s.tration, the usual movements of the hypocotyls and epicotyls of seedlings, whilst breaking through the ground and immediately afterwards. We may suppose a man to be thrown down on his hands and knees, and at the same time to one side, by a load of hay falling on him. He would first endeavour to get his arched back upright, wriggling at the same time in all directions to free himself a little from the surrounding pressure; and this may represent the combined effects of apogeotropism and circ.u.mnutation, when a seed is so buried that the arched hypocotyl or epicotyl protrudes at first in a horizontal or inclined plane.

The man, still wriggling, would then raise his arched back as high as he could; and this may represent the growth and continued circ.u.mnutation of an arched hypocotyl or epicotyl, before it has reached the surface of the ground. As soon as the man felt himself at all free, he would raise the upper part of his body, whilst still on [page 107]

his knees and still wriggling; and this may represent the bowing backwards of the basal leg of the arch, which in most cases aids in the withdrawal of the cotyledons from the buried and ruptured seed-coats, and the subsequent straightening of the whole hypocotyl or epicotyl--circ.u.mnutation still continuing.

Circ.u.mnutation of Hypocotyls and Epicotyls, when erect.--The hypocotyls, epicotyls, and first shoots of the many seedlings observed by us, after they had become straight and erect, circ.u.mnutated continuously. The diversified figures described by them, often during two successive days, have been shown in the woodcuts in the last chapter. It should be recollected that the dots were joined by straight lines, so that the figures are angular; but if the observations had been made every few minutes the lines would have been more or less curvilinear, and irregular ellipses or ovals, or perhaps occasionally circles, would have been formed.

The direction of the longer axes of the ellipses made during the same day or on successive days generally changed completely, so as to stand at right angles to one another. The number of irregular ellipses or circles made within a given time differs much with different species. Thus with Bra.s.sica oleracea, Cerinthe major, and Cucurbita ovifera about four such figures were completed in 12 h.; whereas with Solanum palinacanthum and Opuntia basilaris, scarcely more than one. The figures likewise differ greatly in size; thus they were very small and in some degree doubtful in Stapelia, and large in Bra.s.sica, etc. The ellipses described by Lathyrus nissolia and Bra.s.sica were narrow, whilst those made by the Oak were broad. The figures are often complicated by small loops and zigzag lines.

As most seedling plants before the development of true leaves are of low, sometimes very low stature, [page 108]

the extreme amount of movement from side to side of their circ.u.mnutating stems was small; that of the hypocotyl of Githago segetum was about .2 of an inch, and that of Cucurbita ovifera about .28. A very young shoot of Lathyrus nissolia moved about .14, that of an American oak .2, that of the common nut only .04, and a rather tall shoot of the Asparagus .11 of an inch. The extreme amount of movement of the sheath-like cotyledon of Phalaris Canariensis was .3 of an inch; but it did not move very quickly, the tip crossing on one occasion five divisions of the micrometer, that is, 1/100th of an inch, in 22 m. 5 s. A seedling Nolana prostrata travelled the same distance in 10 m. 38 s. Seedling cabbages circ.u.mnutate much more quickly, for the tip of a cotyledon crossed 1/100th of an inch on the micrometer in 3 m. 20 s.; and this rapid movement, accompanied by incessant oscillations, was a wonderful spectacle when beheld under the microscope.

The absence of light, for at least a day, does not interfere in the least with the circ.u.mnutation of the hypocotyls, epicotyls, or young shoots of the various dicotyledonous seedlings observed by us; nor with that of the young shoots of some monocotyledons. The circ.u.mnutation was indeed much plainer in darkness than in light, for if the light was at all lateral the stem bent towards it in a more or less zigzag course.

Finally, the hypocotyls of many seedlings are drawn during the winter into the ground, or even beneath it so that they disappear. This remarkable process, which apparently serves for their protection, has been fully described by De Vries.* He shows that

* 'Bot. Zeitung,' 1879, p. 649. See also Winkler in 'Verhandl. des Bot.

Vereins der P. Brandenburg,' Jahrg. xvi. p. 16, as quoted by Haberlandt, 'Schutzeinrichungen der Keimpflanze,' 1877, p. 52.

[page 109]

it is effected by the contraction of the parenchyma-cells of the root. But the hypocotyl itself in some cases contracts greatly, and although at first smooth becomes covered with zigzag ridges, as we observed with Githago segetum. How much of the drawing down and burying of the hypocotyl of Opuntia basilaris was due to the contraction of this part and how much to that of the radicle, we did not observe.

Circ.u.mnutation of Cotyledons.--With all the dicotyledonous seedlings described in the last chapter, the cotyledons were in constant movement, chiefly in a vertical plane, and commonly once up and once down in the course of the 24 hours. But there were many exceptions to such simplicity of movement; thus the cotyledons of Ipomoea caerulea moved 13 times either upwards or downwards in the course of 16 h.. 18 m. Those of Oxalis rosea moved in the same manner 7 times in the course of 24 h.; and those of Ca.s.sia tora described 5 irregular ellipses in 9 h. The cotyledons of some individuals of Mimosa pudica and of Lotus Jacobaeus moved only once up and down in 24 h., whilst those of others performed within the same period an additional small oscillation. Thus with different species, and with different individuals of the same species, there were many gradations from a single diurnal movement to oscillations as complex as those of the Ipomoea and Ca.s.sia. The opposite cotyledons on the same seedling move to a certain extent independently of one another. This was conspicuous with those of Oxalis sensitiva, in which one cotyledon might be seen during the daytime rising up until it stood vertically, whilst the opposite one was sinking down.

Although the movements of cotyledons were generally in nearly the same vertical plane, yet their upward and downward courses never exactly coin- [page 110]

cided; so that ellipses, more or less narrow, were described, and the cotyledons may safely be said to have circ.u.mnutated. Nor could this fact be accounted for by the mere increase in length of the cotyledons through growth, for this by itself would not induce any lateral movement. That there was lateral movement in some instances, as with the cotyledons of the cabbage, was evident; for these, besides moving up and down, changed their course from right to left 12 times in 14 h. 15 m. With Solanum lycopersic.u.m the cotyledons, after falling in the forenoon, zigzagged from side to side between 12 and 4 P.M., and then commenced rising. The cotyledons of Lupinus luteus are so thick (about .08 of an inch) and fleshy,* that they seemed little likely to move, and were therefore observed with especial interest; they certainly moved largely up and down, and as the line traced was zigzag there was some lateral movement. The nine cotyledons of a seedling Pinus pinaster plainly circ.u.mnutated; and the figures described approached more nearly to irregular circles than to irregular ovals or ellipses. The sheath-like cotyledons of the Gramineae circ.u.mnutate, that is, move to all sides, as plainly as do the hypocotyls or epicotyls of any dicotyledonous plants. Lastly, the very young fronds of a Fern and of a Selaginella circ.u.mnutated.

In a large majority of the cases which were carefully observed, the cotyledons sink a little downwards in the forenoon, and rise a little in the afternoon or evening. They thus stand rather more highly inclined during the night than during the mid-day, at which

* The cotyledons, though bright green, resemble to a certain extent hypogean ones; see the interesting discussion by Haberlandt ('Die Schutzeinrichtungen,' etc., 1877, p. 95), on the gradations in the Leguminosae between subaerial and subterranean cotyledons.

[page 111]

time they are expanded almost horizontally. The circ.u.mnutating movement is thus at least partially periodic, no doubt in connection, as we shall hereafter see, with the daily alternations of light and darkness. The cotyledons of several plants move up so much at night as to stand nearly or quite vertically; and in this latter case they come into close contact with one another. On the other hand, the cotyledons of a few plants sink almost or quite vertically down at night; and in this latter case they clasp the upper part of the hypocotyl. In the same genus Oxalis the cotyledons of certain species stand vertically up, and those of other species vertically down, at night. In all such cases the cotyledons may be said to sleep, for they act in the same manner as do the leaves of many sleeping plants. This is a movement for a special purpose, and will therefore be considered in a future chapter devoted to this subject.

In order to gain some rude notion of the proportional number of cases in which the cotyledons of dicotyledonous plants (hypogean ones being of course excluded) changed their position in a conspicuous manner at night, one or more species in several genera were cursorily observed, besides those described in the last chapter. Altogether 153 genera, included in as many families as could be procured, were thus observed by us. The cotyledons were looked at in the middle of the day and again at night; and those were noted as sleeping which stood either vertically or at an angle of at least 60o above or beneath the horizon. Of such genera there were 26; and in 21 of them the cotyledons of some of the species rose, and in only 6 sank at night; and some of these latter cases are rather doubtful from causes to be explained in the chapter on the sleep of cotyledons. When [page 112]

cotyledons which at noon were nearly horizontal, stood at night at more than 20o and less than 60o above the horizon, they were recorded as "plainly raised;" and of such genera there were 38. We did not meet with any distinct instances of cotyledons periodically sinking only a few degrees at night, although no doubt such occur. We have now accounted for 64 genera out of the 153, and there remain 89 in which the cotyledons did not change their position at night by as much as 20o--that is, in a conspicuous manner which could easily be detected by the unaided eye and by memory; but it must not be inferred from this statement that these cotyledons did not move at all, for in several cases a rise of a few degrees was recorded, when they were carefully observed. The number 89 might have been a little increased, for the cotyledons remained almost horizontal at night in some species in a few genera, for instance, Trifolium and Geranium, which are included amongst the sleepers, such genera might therefore have been added to the 89. Again, one species of Oxalis generally raised its cotyledons at night more than 20o and less than 60o above the horizon; so that this genus might have been included under two heads. But as several species in the same genus were not often observed, such double entries have been avoided.

In a future chapter it will be shown that the leaves of many plants which do not sleep, rise a few degrees in the evening and during the early part of the night; and it will be convenient to defer until then the consideration of the periodicity of the movements of cotyledons.

On the Pulvini or Joints of Cotyledons.--With several of the seedlings described in this and the last chapter, the summit of the petiole is developed into a pulvinus, [page 113]

cushion, or joint (as this organ has been variously called), like that with which many leaves are provided. It consists of a ma.s.s of small cells usually of a pale colour from the absence of chlorophyll, and with its outline more or less convex, as shown in the annexed figure. In the case of Oxalis sensitiva two-thirds of the petiole, and in that of Mimosa pudica, apparently the whole of the short sub-petioles of the leaflets have been converted into pulvini. With pulvinated leaves (i.e. those provided with a pulvinus) their periodical movements depend, according to Pfeffer,* on the cells of the pulvinus alternately expanding more quickly on one side than on the other; whereas the similar movements of leaves not provided with pulvini, depend on their growth being alternately more rapid on one side than on the other.** As long as a leaf provided with a pulvinus is young and continues to grow, its movement depends on both these causes combined;*** and if the view now held by many botanists be sound, namely, that growth is always preceded by the expansion of the growing cells, then the difference between the movements induced by the aid of pulvini and

Fig. 63. Oxalis rosea: longitudinal section of a pulvinus on the summit of the petiole of a cotyledon, drawn with the camera lucida, magnified 75 times: p, p, petiole; f, fibro-vascular bundle: b, b, commencement of blade of cotyledon.

* 'Die Periodische Bewegungen der Blattorgane,' 1875.

** Batalin, 'Flora,' Oct. 1st, 1873

*** Pfeffer, ibid. p. 5.

[page 114]

without such aid, is reduced to the expansion of the cells not being followed by growth in the first case, and being so followed in the second case.

Dots were made with Indian ink along the midrib of both pulvinated cotyledons of a rather old seedling of Oxalis Valdiviana; their distances were repeatedly measured with an eye-piece micrometer during 8 3/4 days, and they did not exhibit the least trace of increase. It is therefore almost certain that the pulvinus itself was not then growing. Nevertheless, during this whole time and for ten days afterwards, these cotyledons rose vertically every night. In the case of some seedlings raised from seeds purchased under the name of Oxalis floribunda, the cotyledons continued for a long time to move vertically down at night, and the movement apparently depended exclusively on the pulvini, for their petioles were of nearly the same length in young, and in old seedlings which had produced true leaves.

With some species of Ca.s.sia, on the other hand, it was obvious without any measurement that the pulvinated cotyledons continued to increase greatly in length during some weeks; so that here the expansion of the cells of the pulvini and the growth of the petiole were probably combined in causing their prolonged periodic movements. It was equally evident that the cotyledons of many plants, not provided with pulvini, increased rapidly in length; and their periodic movements no doubt were exclusively due to growth.

In accordance with the view that the periodic movements of all cotyledons depend primarily on the expansion of the cells, whether or not followed by growth, we can understand the fact that there is but little difference in the kind or form of movement in the two sets of cases. This may be seen by com- [page 115]

paring the diagrams given in the last chapter. Thus the movements of the cotyledons of Bra.s.sica oleracea and of Ipomoea caerulea, which are not provided with pulvini, are as complex as those of Oxalis and Ca.s.sia which are thus provided. The pulvinated cotyledons of some individuals of Mimosa pudica and Lotus Jacobaeus made only a single oscillation, whilst those of other individuals moved twice up and down in the course of 24 hours; so it was occasionally with the cotyledons of Cucurbita ovifera, which are dest.i.tute of a pulvinus. The movements of pulvinated cotyledons are generally larger in extent than those without a pulvinus; nevertheless some of the latter moved through an angle of 90o. There is, however, one important difference in the two sets of cases; the nocturnal movements of cotyledons without pulvini, for instance, those in the Cruciferae, Cucurbitaceae, Githago, and Beta, never last even for a week, to any conspicuous degree. Pulvinated cotyledons, on the other hand, continue to rise at night for a much longer period, even for more than a month, as we shall now show. But the period no doubt depends largely on the temperature to which the seedlings are exposed and their consequent rate of development.

[Oxalis Valdiviana.--Some cotyledons which had lately opened and were horizontal on March 6th at noon, stood at night vertically up; on the 13th the first true leaf was formed, and was embraced at night by the cotyledons; on April 9th, after an interval of 35 days, six leaves were developed, and yet the cotyledons rose almost vertically at night. The cotyledons of another seedling, which when first observed had already produced a leaf, stood vertically at night and continued to do so for 11 additional days. After 16 days from the first observation two leaves were developed, and the cotyledons were still greatly raised at night. After 21 days the cotyledons during the day were deflected beneath the horizon, but at night were raised 45o [page 116]

above it. After 24 days from the first observation (begun after a true leaf had been developed) the cotyledons ceased to rise at night.

Oxalis (Biophytum) sensitiva.--The cotyledons of several seedlings, 45 days after their first expansion, stood nearly vertical at night, and closely embraced either one or two true leaves which by this time had been formed.

These seedlings had been kept in a very warm house, and their development had been rapid.

Oxalis corniculata.--The cotyledons do not stand vertical at night, but generally rise to an angle of about 45o above the horizon. They continued thus to act for 23 days after their first expansion, by which time two leaves had been formed; even after 29 days they still rose moderately above their horizontal or downwardly deflected diurnal position.

Mimosa pudica.--The cotyledons were expanded for the first time on Nov.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Legend of Swordsman

Legend of Swordsman

Legend of Swordsman Chapter 5481 This World Is Vast Author(s) : 打死都要钱, Mr. Money View : 9,411,879
Eternal Sacred King

Eternal Sacred King

Eternal Sacred King Chapter 2973: Death of King Earth Kun! Author(s) : Snow-filled Bow Saber, 雪满弓刀 View : 5,344,880

The Power of Movement in Plants Part 8 summary

You're reading The Power of Movement in Plants. This manga has been translated by Updating. Author(s): Charles Darwin. Already has 480 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com