The Power of Movement in Plants - novelonlinefull.com
You’re read light novel The Power of Movement in Plants Part 21 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
232 and 249) representing the circ.u.mnutation of the young leaves of Acanthus mollis and Pelargonium zonale. Similar cases were observed with Drosera. The movements of a young leaf, only 3/4 inch in length, of Petunia violacea were traced during four days, and offers a better instance (Fig.
111, p. 248) as it diverged during the whole of this time in a curiously zigzag line with some of the angles sharply acute, and during the latter days plainly circ.u.mnutated. Some young leaves of about the same age on a plant of this Petunia, which had been laid horizontally, and on another plant which was left upright, both being kept in complete darkness, diverged in the same manner for 48 h., and apparently were not affected by apogeotropism; though their stems were in a state of high tension, for when freed from the sticks to which they had been tied, they instantly curled upwards.
The leaves, whilst very young, on the leading shoots of the Carnation (Dianthus caryophyllus) are highly inclined or vertical; and if the plant is growing vigorously they diverge so quickly that they become almost horizontal in a day. But they move downwards in a rather oblique line and continue for some time afterwards to move in the same direction, in connection, we presume, with their spiral arrangement on the stem. The course pursued by a young leaf whilst thus obliquely descending was traced, and the line was distinctly yet not strongly zigzag; the larger angles formed by the successive lines amounting only to 135o, 154o, and 163o. The subsequent lateral movement (shown in Fig. 96, p. 231) was strongly zigzag with occasional circ.u.mnutations. The divergence and sinking of the young leaves of this plant seem to be very little affected by geotropism or heliotropism; for a plant, the leaves of which were growing rather slowly (as ascertained by measurement) was laid horizontally, and the opposite young leaves diverged from one another symmetrically in the usual manner, without any upturning in the direction of gravitation or towards the light.
The needle-like leaves of Pinus pinaster form a bundle whilst young; afterwards they slowly diverge, so that those on the upright shoots become horizontal. The movements of one such [page 270]
young leaf was traced during 4 days, and the tracing here given (Fig.
121) shows that it descended at first in a nearly straight line, but afterwards zigzagged, making one or two little loops. The diverging and descending movements of a rather older leaf were also traced (see former Fig. 113, p. 251): it descended during the first day and night in a somewhat zigzag line; it then circ.u.mnutated round a small s.p.a.ce and again descended. By this time the leaf had nearly a.s.sumed its final position, and now plainly circ.u.mnutated. As in the case of the Carnation, the leaves, whilst very young, do not seem to be much affected by geotropism or heliotropism, for those on a young plant laid horizontally, and those on another plant left upright, both kept in the dark, continued to diverge in the usual manner without bending to either side.
Fig. 121. Pinus pinaster: epinastic downward movement of a young leaf, produced by a young plant in a pot, traced on a vertical gla.s.s under a skylight, from 6.45 A.M. June 2nd to 10.40 P.M. 6th.
With Coboea scandens, the young leaves, as they successively diverge from the leading shoot which is bent to one side, rise up so as to project vertically, and they retain this position for some time whilst the tendril is revolving. The diverging and ascending movements of the petiole of one such a leaf, were traced on a vertical gla.s.s under a skylight; and the course pursued was in most parts nearly straight, but there were two [page 271]
well-marked zigzags (one of them forming an angle of 112o), and this indicates circ.u.mnutation.
The still closed lobes of a young leaf of Dionaea projected at right angles to the petiole, and were in the act of slowly rising. A gla.s.s filament was attached to the under side of the midrib, and its movements were traced on a vertical gla.s.s. It circ.u.mnutated once in the evening, and on the next day rose, as already described (see Fig. 106, p. 240), by a number of acutely zigzag lines, closely approaching in character to ellipses. This movement no doubt was due to epinasty, aided by apogeotropism, for the closed lobes of a very young leaf on a plant which had been placed horizontally, moved into nearly the same line with the petiole, as if the plant had stood upright; but at the same time the lobes curved laterally upwards, and thus occupied an unnatural position, obliquely to the plane of the foliaceous petiole.
As the hypocotyls and epicotyls of some plants protrude from the seed-coats in an arched form, it is doubtful whether the arching of these parts, which is invariably present when they break through the ground, ought always to be attributed to epinasty; but when they are at first straight and afterwards become arched, as often happens, the arching is certainly due to epinasty. As long as the arch is surrounded by compact earth it must retain its form; but as soon as it rises above the surface, or even before this period if artificially freed from the surrounding pressure, it begins to straighten itself, and this no doubt is mainly due to hyponasty. The movement of the upper and lower half of the arch, and of the crown, was occasionally traced; and the course was more or less zigzag, showing modified circ.u.mnutation.
With not a few plants, especially climbers, the summit of the shoot is hooked, so that the apex points vertically downwards. In seven genera of twining plants* the hooking, or as it has been called by Sachs, the nutation of the tip, is mainly due to an exaggerated form of circ.u.mnutation. That is, the growth is so great along one side that it bends the shoot completely over to the opposite side, thus forming a hook; the longitudinal line or zone of growth then travels a little laterally round the shoot, and the hook points in a slightly different direction, and so onwards until the hook is completely reversed. Ultimately it
* 'The Movements and Habits of Climbing Plants,' 2nd edit. p. 13.
[page 272]
comes back to the point whence it started. This was ascertained by painting narrow lines with Indian ink along the convex surface of several hooks, and the line was found slowly to become at first lateral, then to appear along the concave surface, and ultimately back again on the convex surface. In the case of Lonicera brachypoda the hooked terminal part of the revolving shoot straightens itself periodically, but is never reversed; that is, the periodically increased growth of the concave side of the hook is sufficient only to straighten it, and not to bend it over to the opposite side. The hooking of the tip is of service to twining plants by aiding them to catch hold of a support, and afterwards by enabling this part to embrace the support much more closely than it could otherwise have done at first, thus preventing it, as we often observed, from being blown away by a strong wind. Whether the advantage thus gained by twining plants accounts for their summits being so frequently hooked, we do not know, as this structure is not very rare with plants which do not climb, and with some climbers (for instance, Vitis, Ampelopsis, Cissus, etc.) to whom it does not afford any a.s.sistance in climbing.
With respect to those cases in which the tip remains always bent or hooked towards the same side, as in the genera just named, the most obvious explanation is that the bending is due to continued growth in excess along the convex side. Wiesner, however, maintains* that in all cases the hooking of the tip is the result of its plasticity and weight,--a conclusion which from what we have already seen with several climbing plants is certainly erroneous. Nevertheless, we fully admit that the weight of the part, as well as geotropism, etc., sometimes come into play.
Ampelopsis tricuspidata.--This plant climbs by the aid of adhesive tendrils, and the hooked tips of the shoots do not appear to be of any service to it. The hooking depends chiefly, as far as we could ascertain, on the tip being affected by epinasty and geotropism; the lower and older parts continually straightening themselves through hyponasty and apogeotropism. We believe that the weight of the apex is an unimportant element, because on horizontal or inclined shoots the hook is often extended horizontally or even faces upwards. Moreover shoots frequently form loops instead of hooks; and in this case the
* 'Sitzb. der k. Akad. der Wissensch.,' Vienna, Jan. 1880, p. 16.
[page 273]
Fig. 122. Ampelopsis tricuspidata: hyponastic movement of hooked tip of leading shoot, traced from 8.10 A.M. July 13th to 8 A.M. 15th. Apex of shoot 5 inches from the vertical gla.s.s. Plant illuminated through a skylight. Temp. 17 1/2o - 19o C. Diagram reduced to one-third of original scale.
extreme part, instead of hanging vertically down as would follow if weight was the efficient cause, extends horizontally or even points upwards. A shoot, which terminated in a rather open hook, was fastened in a highly inclined downward position, so that the concave side faced upwards, and the result was that the apex at first curved upwards. This apparently was due to epinasty and not to apogeotropism, for the apex, soon after pa.s.sing the perpendicular, curved so rapidly downwards that we could not doubt that the movement was at least aided by geotropism. In the course of a few hours the hook was thus converted into a loop with the apex of the shoot pointing straight downwards. The longer axis of the loop was at first horizontal, but afterwards became vertical. During this same time the basal part of the hook (and subsequently of the loop) curved itself slowly upwards; and this must have been wholly due to apogeotropism in opposition to hyponasty. The loop was then fastened upside down, so that its basal half would be simultaneously acted on by hyponasty (if present) and by apogeotropism; and now it curved itself so greatly upwards in the course of only 4 h. that there could hardly be a doubt that both forces were acting [page 274]
together. At the same time the loop became open and was thus reconverted into a hook, and this apparently was effected by the geotropic movement of the apex in opposition to epinasty. In the case of Ampelopsis hederacea, weight plays, as far as we could judge, a more important part in the hooking of the tip.
In order to ascertain whether the shoots of A. tricuspidata in straightening themselves under the combined action of hyponasty and apogeotropism moved in a simple straight course, or whether they circ.u.mnutated, gla.s.s filaments were fixed to the crowns of four hooked tips standing in their natural position; and the movements of the filaments were traced on a vertical gla.s.s. All four tracings resembled each other in a general manner; but we will give only one (see Fig. 122, p. 273). The filament rose at first, which shows that the hook was straightening itself; it then zigzagged, moving a little to the left between 9.25 A.M. and 9 P.M.
From this latter hour on the 13th to 10.50 A.M. on the following morning (14th) the hook continued to straighten itself, and then zigzagged a short distance to the right. But from 1 P.M. to 10.40 P.M. on the 14th the movement
Fig. 123. Smithia Pfundii: hyponastic movement of the curved summit of a stem, whilst straightening itself, traced from 9 A.M. July 10th to 3 P.M.
13th. Apex 9 inches from the vertical gla.s.s. Diagram reduced to one-fifth of original scale. Plant illuminated through skylight; temp. 17 1/2o - 19o C.
[page 275]
was reversed and the shoot became more hooked. During the night, after 10.40 P.M. to 8.15 A.M. on the 15th, the hook again opened or straightened itself. By this time the gla.s.s filament had become so highly inclined that its movements could no longer be traced with accuracy; and by 1.30 P.M. on this same day, the crown of the former arch or hook had become perfectly straight and vertical. There can therefore be no doubt that the straightening of the hooked shoot of this plant is effected by the circ.u.mnutation of the arched portion--that is, by growth alternating between the upper and lower surface, but preponderant on the lower surface, with some little lateral movement.
We were enabled to trace the movement of another straightening shoot for a longer period (owing to its slower growth and to its having been placed further from the vertical gla.s.s), namely, from the early morning on July 13th to late in the evening of the 16th. During the whole daytime of the 14th, the hook straightened itself very little, but zigzagged and plainly circ.u.mnutated about nearly the same spot. By the 16th it had become nearly straight, and the tracing was no longer accurate, yet it was manifest that there was still a considerable amount of movement both up and down and laterally; for the crown whilst continuing to straighten itself occasionally became for a short time more curved, causing the filament to descend twice during the day.
Smithia Pfundii.--The stiff terminal shoots of this Leguminous water-plant from Africa project so as to make a rectangle with the stem below; but this occurs only when the plants are growing vigorously, for when kept in a cool place, the summits of the stems become straight, as they likewise did at the close of the growing season. The direction of the rectangularly bent part is independent of the chief source of light. But from observing the effects of placing plants in the dark, in which case several shoots became in two or three days upright or nearly upright, and when brought back into the light again became rectangularly curved, we believe that the bending is in part due to apheliotropism, apparently somewhat opposed by apogeotropism. On the other hand, from observing the effects of tying a shoot downwards, so that the rectangle faced upwards, we are led to believe that the curvature is partly due to epinasty. As the rectangularly bent portion of an upright stem grows older, the lower part straightens itself; and this is effected through hyponasty. He who has read Sachs' recent Essay on the vertical [page 276]
and inclined positions of the parts of plants* will see how difficult a subject this is, and will feel no surprise at our expressing ourselves doubtfully in this and other such cases.
A plant, 20 inches in height, was secured to a stick close beneath the curved summit, which formed rather less than a rectangle with the stem below. The shoot pointed away from the observer; and a gla.s.s filament pointing towards the vertical gla.s.s on which the tracing was made, was fixed to the convex surface of the curved portion. Therefore the descending lines in the figure represent the straightening of the curved portion as it grew older. The tracing (Fig. 123, p. 274) was begun at 9 A.M. on July 10th; the filament at first moved but little in a zigzag line, but at 2 P.M. it began rising and continued to do so till 9 P.M.; and this proves that the terminal portion was being more bent downwards. After 9 P.M. on the 10th an opposite movement commenced, and the curved portion began to straighten itself, and this continued till 11.10 A.M. on the 12th, but was interrupted by some small oscillations and zigzags, showing movement in different directions. After 11.10 A.M. on the 12th this part of the stem, still considerably curved, circ.u.mnutated in a conspicuous manner until nearly 3 P.M. on the 13th; but during all this time a downward movement of the filament prevailed, caused by the continued straightening of the stem.
By the afternoon of the 13th, the summit, which had originally been deflected more than a right angle from the perpendicular, had grown so nearly straight that the tracing could no longer be continued on the vertical gla.s.s. There can therefore be no doubt that the straightening of the abruptly curved portion of the growing stem of this plant, which appears to be wholly due to hyponasty, is the result of modified circ.u.mnutation. We will only add that a filament was fixed in a different manner across the curved summit of another plant, and the same general kind of movement was observed.
Trifolium repens.--In many, but not in all the species of Trifolium, as the separate little flowers wither, the sub-peduncles bend downwards, so as to depend parallel to the upper part of the main peduncle. In Tr. subterraneum the main peduncle curves downwards for the sake of burying its capsules, and in this species the sub-peduncles of the separate flowers bend
* 'Ueber Orthotrope und Plagiotrope Pflanzentheile;' 'Arbeiten des Bot.
Inst., in Wurzburg,' Heft ii. 1879, p. 226.
[page 277]
Fig. 124. Trifolium repens: circ.u.mnutating and epinastic movements of the sub-peduncle of a single flower, traced on a vertical gla.s.s under a skylight, in A from 11.30 A.M. Aug. 27th to 7 A.M. 30th; in B from 7 A.M.
Aug. 30th to a little after 6 P.M. Sept. 8th.
[page 278]
upwards, so as to occupy the same position relatively to the upper part of the main peduncle as in Tr. repens. This fact alone would render it probable that the movements of the sub-peduncles in Tr. repens were independent of geotropism. Nevertheless, to make sure, some flower-heads were tied to little sticks upside down and others in a horizontal position; their sub-peduncles, however, all quickly curved upwards through the action of heliotropism. We therefore protected some flower-heads, similarly secured to sticks, from the light, and although some of them rotted, many of their sub-peduncles turned very slowly from their reversed or from their horizontal positions, so as to stand in the normal manner parallel to the upper part of the main peduncle. These facts show that the movement is independent of geotropism or apheliotropism; it must there[fore] be attributed to epinasty, which however is checked, at least as long as the flowers are young, by heliotropism. Most of the above flowers were never fertilised owing to the exclusion of bees; they consequently withered very slowly, and the movements of the sub-peduncles were in like manner much r.e.t.a.r.ded.
To ascertain the nature of the movement of the sub-peduncle, whilst bending downwards, a filament was fixed across the summit of the calyx of a not fully expanded and almost upright flower, nearly in the centre of the head.
The main peduncle was secured to a stick close beneath the head. In order to see the marks on the gla.s.s filament, a few flowers had to be cut away on the lower side of the head. The flower under observation at first diverged a little from its upright position, so as to occupy the open s.p.a.ce caused by the removal of the adjoining flowers. This required two days, after which time a new tracing was begun (Fig. 124). In A we see the complex circ.u.mnutating course pursued from 11.30 A.M. Aug. 26th to 7 A.M. on the 30th. The pot was then moved a very little to the right, and the tracing (B) was continued without interruption from 7 A.M. Aug. 30th to after 6 P.M. Sept. 8th. It should be observed that on most of these days, only a single dot was made each morning at the same hour. Whenever the flower was observed carefully, as on Aug. 30th and Sept. 5th and 6th, it was found to be circ.u.mnutating over a small s.p.a.ce. At last, on Sept. 7th, it began to bend downwards, and continued to do so until after 6 P.M. on the 8th, and indeed until the morning of the 9th, when its movements could no longer be traced on the vertical gla.s.s. It was carefully observed during the whole of the 8th, and by [page 279]
10.30 P.M. it had descended to a point lower down by two-thirds of the length of the figure as here given; but from want of s.p.a.ce the tracing has been copied in B, only to a little after 6 P.M. On the morning of the 9th the flower was withered, and the sub-peduncle now stood at an angle of 57o beneath the horizon. If the flower had been fertilised it would have withered much sooner, and have moved much more quickly. We thus see that the sub-peduncle oscillated up and down, or circ.u.mnutated, during its whole downward epinastic course.
The sub-peduncles of the fertilised and withered flowers of Oxalis carnosa likewise bend downwards through epinasty, as will be shown in a future chapter; and their downward course is strongly zigzag, indicating circ.u.mnutation.]
The number of instances in which various organs move through epinasty or hyponasty, often in combination with other forces, for the most diversified purposes, seems to be inexhaustibly great; and from the several cases which have been here given, we may safely infer that such movements are due to modified circ.u.mnutation.
[page 280]
CHAPTER VI.
MODIFIED CIRc.u.mNUTATION: SLEEP OR NYCt.i.tROPIC MOVEMENTS, THEIR USE: SLEEP OF COTYLEDONS.
Preliminary sketch of the sleep or nyct.i.tropic movements of leaves-- Presence of pulvini--The lessening of radiation the final cause of nyct.i.tropic movements--Manner of trying experiments on leaves of Oxalis, Arachis, Ca.s.sia, Melilotus, Lotus and Marsilea and on the cotyledons of Mimosa--Concluding remarks on radiation from leaves--Small differences in the conditions make a great difference in the result - Description of the nyct.i.tropic position and movements of the cotyledons of various plants-- List of species--Concluding remarks--Independence of the nyct.i.tropic movements of the leaves and cotyledons of the same species--Reasons for believing that the movements have been acquired for a special purpose.
The so-called sleep of leaves is so conspicuous a phenomenon that it was observed as early as the time of Pliny;* and since Linnaeus published his famous Essay, 'Somnus Plantarum,' it has been the subject of several memoirs. Many flowers close at night, and these are likewise said to sleep; but we are not here concerned with their movements, for although effected by the same mechanism as in the case of young leaves, namely, unequal growth on the opposite sides (as first proved by Pfeffer), yet they differ essentially in being excited chiefly by changes of temperature instead of light; and in being effected, as far as we can judge, for a different purpose. Hardly any one supposes that there is any real a.n.a.logy
* Pfeffer has given a clear and interesting sketch of the history of this subject in his 'Die Periodischen Bewegungen der Blattorgane,' 1875, P. 163.
[page 281]
between the sleep of animals and that of plants,* whether of leaves or flowers. It seems therefore, advisable to give a distinct name to the so-called sleep-movements of plants. These have also generally been confounded, under the term "periodic," with the slight daily rise and fall of leaves, as described in the fourth chapter; and this makes it all the more desirable to give some distinct name to sleep-movements. Nyct.i.tropism and nyct.i.tropic, i.e. night-turning, may be applied both to leaves and flowers, and will be occasionally used by us; but it would be best to confine the term to leaves. The leaves of some few plants move either upwards or downwards when the sun shines intensely on them, and this movement has sometimes been called diurnal sleep; but we believe it to be of an essentially different nature from the nocturnal movement, and it will be briefly considered in a future chapter.
The sleep or nyct.i.tropism of leaves is a large subject, and we think that the most convenient plan will be first to give a brief account of the position which leaves a.s.sume at night, and of the advantages apparently thus gained. Afterwards the more remarkable cases will be described in detail, with respect to cotyledons in the present chapter, and to leaves in the next chapter. Finally, it will be shown that these movements result from circ.u.mnutation, much modified and regulated by the alternations of day and night, or light and darkness; but that they are also to a certain extent inherited.
Leaves, when they go to sleep, move either upwards or downwards, or in the case of the leaflets of com-
* Ch. Royer must, however, be excepted; see 'Annales des Sc. Nat.' (5th series), Bot. vol. ix. 1868, p. 378.
[page 282]
pound leaves, forwards, that is, towards the apex of the leaf, or backwards, that is, towards its base; or, again, they may rotate on their own axes without moving either upwards or downwards. But in almost every case the plane of the blade is so placed as to stand nearly or quite vertically at night. Therefore the apex, or the base, or either lateral edge, may be directed towards the zenith. Moreover, the upper surface of each leaf, and more especially of each leaflet, is often brought into close contact with that of the opposite one; and this is sometimes effected by singularly complicated movements. This fact suggests that the upper surface requires more protection than the lower one. For instance, the terminal leaflet in Trifolium, after turning up at night so as to stand vertically, often continues to bend over until the upper surface is directed downwards whilst the lower surface is fully exposed to the sky; and an arched roof is thus formed over the two lateral leaflets, which have their upper surfaces pressed closely together. Here we have the unusual case of one of the leaflets not standing vertically, or almost vertically, at night.
Considering that leaves in a.s.suming their nyct.i.tropic positions often move through an angle of 90o; that the movement is rapid in the evening; that in some cases, as we shall see in the next chapter, it is extraordinarily complicated; that with certain seedlings, old enough to bear true leaves, the cotyledons move vertically upwards at night, whilst at the same time the leaflets move vertically downwards; and that in the same genus the leaves or cotyledons of some species move upwards, whilst those of other species move downwards;--from these and other such facts, it is hardly possible to doubt that plants must derive some [page 283]
great advantage from such remarkable powers of movement.