Home

The Outline of Science Part 19

The Outline of Science - novelonlinefull.com

You’re read light novel The Outline of Science Part 19 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Similarly the brown stoat becomes the white ermine, mainly by the growth, of a new suit of white fur, and the same is true of the mountain hare. The ermine is all white except the black tip of its tail; the mountain hare in its winter dress is all white save the black tips of its ears. In some cases, especially in the mountain hare, it seems that individual hairs may turn white, by a loss of pigment, as may occur in man. According to Metchnikoff, the wandering amoeboid cells of the body, called phagocytes, may creep up into the hairs and come back again with microscopic burdens of pigment. The place of the pigment is taken by gas-bubbles, and that is what causes the whiteness. In no animals is there any white _pigment_; the white _colour_ is like that of snow or foam, it is due to the complete reflection of the light from innumerable minute surfaces of crystals or bubbles.

[Ill.u.s.tration: _Photo: W. S. Berridge, F.Z.S._

BANDED KRAIT: A VERY POISONOUS SNAKE WITH ALTERNATING YELLOW AND DARK BANDS

It is very conspicuous and may serve as an ill.u.s.tration of warning coloration. Perhaps, that is to say, its striking coloration serves as an advertis.e.m.e.nt, impressing other creatures with the fact that the Banded Krait should be left alone. It is very unprofitable for a snake to waste its venom on creatures it does not want.]

[Ill.u.s.tration: _Photos: W. S. Berridge, F.Z.S._

THE WARTY CHAMELEON

The upper photograph shows the Warty Chameleon inflated and conspicuous.

At another time, however, with compressed body and adjusted coloration, the animal is very inconspicuous. The lower photograph shows the sudden protrusion of the very long tongue on a fly.]

[Ill.u.s.tration: SEASONAL COLOUR-CHANGE: A SUMMER SCENE IN NORTH SCANDINAVIA

Showing a brown Variable Hare, Willow Grouse, and Arctic Fox, all inconspicuous in their coloration when seen in their natural surroundings.]

The mountain hare may escape the fox the more readily because its whiteness makes it so inconspicuous against a background of snow; and yet, at other times, we have seen the creature standing out like a target on the dark moorland. So it cuts both ways. The ermine has almost no enemies except the gamekeeper, but its winter whiteness may help it to sneak upon its victims, such as grouse or rabbit, when there is snow upon the ground. In both cases, however, the probability is that the const.i.tutional rhythm which leads to white hair in winter has been fostered and fixed for a reason quite apart from protection. The fact is that for a warm-blooded creature, whether bird or mammal, the physiologically best dress is a white one, for there is less radiation of the precious animal heat from white plumage or white pelage than from any other colour. The quality of warm-bloodedness is a prerogative of birds and mammals, and it means that the body keeps an almost constant temperature, day and night, year in and year out. This is effected by automatic internal adjustments which regulate the supply of heat, chiefly from the muscles, to the loss of heat, chiefly through the skin and from the lungs. The chief importance of this internal heat is that it facilitates the smooth continuance of the chemical processes on which life depends. If the temperature falls, as in hibernating mammals (whose warm-bloodedness is imperfect), the rate of the vital process is slowed down--sometimes dangerously. Thus we see how the white coat helps the life of the creature.

-- 3

Rapid Colour-change

Bony flat-fishes, like plaice and sole, have a remarkable power of adjusting their hue and pattern to the surrounding gravel and sand, so that it is difficult to find them even when we know that they are there.

It must be admitted that they are also very quick to get a sprinkling of sand over their upturned side, so that only the eyes are left showing. But there is no doubt as to the exactness with which they often adjust themselves to be like a little piece of the substratum on which they lie; they will do this within limits in experimental conditions when they are placed on a quite artificial floor. As these fishes are very palatable and are much sought after by such enemies as cormorants and otters, it is highly probably that their power of self-effacement often saves their life. And it may be effected within a few minutes, in some cases within a minute.

In these self-effacing flat-fishes we know with some precision what happens. The adjustment of colour and pattern is due to changes in the size, shape, and position of mobile pigment-cells (chromatoph.o.r.es) and the skin. But what makes the pigment-cells change? The fact that a blind flat-fish does not change its colour gives us the first part of the answer. The colour and the pattern of the surroundings must affect the eye. The message travels by the optic nerve to the brain; from the brain, instead of pa.s.sing down the spinal cord, the message travels down the chain of sympathetic ganglia. From these it pa.s.ses along the nerves which comes out of the spinal cord and control the skin. Thus the message reaches the colour-cells in the skin, and before you have carefully read these lines the flat-fish has slipped on its Gyges ring and become invisible.

The same power of rapid colour-change is seen in cuttlefishes, where it is often an expression of nervous excitement, though it sometimes helps to conceal. It occurs with much subtlety in the aesop prawn, Hippolyte, which may be brown on a brown seaweed, green on sea-lettuce or sea-gra.s.s, red on red seaweed, and so on through an extensive repertory.

According to the nature of the background, [Professor Gamble writes]

so is the mixture of the pigments compounded so as to form a close reproduction both of its colour and its pattern. A sweep of the shrimp net detaches a battalion of these sleeping prawns, and if we turn the motley into a dish and give a choice of seaweed, each variety after its kind will select the one with which it agrees in colour, and vanish. Both when young and when full-grown, the aesop prawn takes on the colour of its immediate surroundings. At nightfall Hippolyte, of whatever colour, changes to a transparent azure blue: its stolidity gives place to a nervous restlessness; at the least tremor it leaps violently, and often swims actively from one food-plant to another. This blue fit lasts till daybreak, and is then succeeded by the prawn's diurnal tint.

Thus, Professor Gamble continues, the colour of an animal may express a nervous rhythm.

[Ill.u.s.tration: _Photo: J. J. Ward, F.E.S._

PROTECTIVE RESEMBLANCE

Hawk Moth, settled down on a branch, and very difficult to detect as long as it remains stationary. Note its remarkable sucking tongue, which is about twice the length of its body. The tongue can be quickly coiled up and put safely away beneath the lower part of the head.]

[Ill.u.s.tration: WHEN ONLY A FEW DAYS OLD, YOUNG BITTERN BEGIN TO STRIKE THE SAME ATt.i.tUDE AS THEIR PARENTS THRUSTING THEIR BILLS UPWARDS AND DRAWING THEIR BODIES UP SO THAT THEY RESEMBLE A BUNCH OF REEDS

The soft browns and blue-greens harmonise with the dull sheaths of the young reeds; the nestling bittern is thus completely camouflaged.]

The Case of Chameleons

The highest level at which rapid colour-change occurs is among lizards, and the finest exhibition of it is among the chameleons. These quaint creatures are characteristic of Africa; but they occur also in Andalusia, Arabia, Ceylon, and Southern India. They are adapted for life on trees, where they hunt insects with great deliberateness and success.

The protrusible tongue, ending in a sticky club, can be shot out for about seven inches in the common chameleon. Their hands and feet are split so that they grip the branches firmly, and the prehensile tail rivals a monkey's. When they wish they can make themselves very slim, contracting the body from side to side, so that they are not very readily seen. In other circ.u.mstances, however, they do not practise self-effacement, but the very reverse. They inflate their bodies, having not only large lungs, but air-sacs in connection with them. The throat bulges; the body sways from side to side; and the creature expresses its sentiments in a hiss. The power of colour-change is very remarkable, and depends partly on the contraction and expansion of the colour-cells (chromatoph.o.r.es) in the under-skin (or dermis) and partly on close-packed refractive granules and crystals of a waste-product called guanin. The repertory of possible colours in the common chameleon is greater than in any other animal except the aesop prawn. There is a legend of a chameleon which was brown in a brown box, green in a green box, and blue in a blue box, and died when put into one lined with tartan; and there is no doubt that one and the same animal has a wide range of colours. The so-called "chameleon" (_Anolis_) of North America is so sensitive that a pa.s.sing cloud makes it change its emerald hue.

There is no doubt that a chameleon may make itself more inconspicuous by changing its colour, being affected by the play of light on its eyes. A bright-green hue is often seen on those that are sitting among strongly illumined green leaves. But the colour also changes with the time of day and with the animal's moods. A sudden irritation may bring about a rapid change; in other cases the transformation comes about very gradually.

When the colour-change expresses the chameleon's feelings it might be compared to blushing, but that is due to an expansion of the arteries of the face, allowing more blood to get into the capillaries of the under-skin. The case of the chameleon is peculiarly interesting because the animal has two kinds of tactics--self-effacement on the one hand and bluffing on the other. There can be little doubt that the power of colour-change sometimes justifies itself by driving off intruders. Dr.

Cyril Crossland observed that a chameleon attacked by a fox-terrier "turned round and opened its great pink mouth in the face of the advancing dog, at the same time rapidly changing colour, becoming almost black. This ruse succeeded every time, the dog turning off at once." In natural leafy surroundings the startling effect would be much greater--a sudden throwing off of the mantle of invisibility and the exposure of a conspicuous black body with a large red mouth.

-- 4

Likeness to Other Things

Dr. H. O. Forbes tells of a flat spider which presents a striking resemblance to a bird's dropping on a leaf. Years after he first found it he was watching in a forest in the Far East when his eye fell on a leaf before him which had been blotched by a bird. He wondered idly why he had not seen for so long another specimen of the bird-dropping spider (_Ornithoscatoides decipiens_), and drew the leaf towards him.

Instantaneously he got a characteristic sharp nip; it was the spider after all! Here the colour-resemblance was enhanced by a form-resemblance.

[Ill.u.s.tration: A. PROTECTIVE COLORATION OR CAMOUFLAGING, GIVING ANIMALS A GARMENT OF INVISIBILITY

At the foot of the plate is a Nightjar, with plumage like bark and withering leaves; to the right, resting on a branch, is shown a Chameleon in a green phase amid green surroundings; the insects on the reeds are Locusts; while a green Frog, merged into its surroundings, rests on a leaf near the centre at the top of the picture.

B. ANOTHER EXAMPLE OF PROTECTIVE COLORATION OR CAMOUFLAGE

A sh.o.r.e scene showing Trout in the pool almost invisible against their background. The Stone Curlews, both adult and young, are very inconspicuous among the stones on the beach.]

But why should it profit a spider to be like a bird-dropping? Perhaps because it thereby escapes attention; but there is another possibility.

It seems that some b.u.t.terflies, allied to our Blues, are often attracted to excrement.i.tious material, and the spider Dr. Forbes observed had actually caught its victim. This is borne out by a recent observation by Dr. D. G. H. Carpenter, who found a Uganda bug closely resembling a bird-dropping on sand. The bug actually settled down on a bird-dropping on sand, and caught a blue b.u.t.terfly which came to feed there!

Some of the walking-stick insects, belonging to the order of crickets and gra.s.shoppers (Orthoptera), have their body elongated and narrow, like a thin dry branch, and they have a way of sticking out their limbs at abrupt and diverse angles, which makes the resemblance to twigs very close indeed. Some of these quaint insects rest through the day and have the remarkable habit of putting themselves into a sort of kataleptic state. Many creatures turn stiff when they get a shock, or pa.s.s suddenly into new surroundings, like some of the sand-hoppers when we lay them on the palm of our hand; but these twig-insects put themselves into this strange state. The body is rocked from side to side for a short time, and then it stiffens. An advantage may be that even if they were surprised by a bird or a lizard, they will not be able to betray themselves by even a tremor. Disguise is perfected by a remarkable habit, a habit which leads us to think of a whole series of different ways of lying low and saying nothing which are often of life-preserving value. The top end of the series is seen when a fox plays 'possum.

The leaf-b.u.t.terfly _Kallima_, conspicuously coloured on its upper surface, is like a withered leaf when it settles down and shows the under side of its wings. Here, again, there is precise form-resemblance, for the nervures on the wings are like the mid-rib and side veins on a leaf, and the touch of perfection is given in the presence of whitish spots which look exactly like the discolorations produced by lichens on leaves. An old entomologist, Mr. Jenner Weir, confessed that he repeatedly pruned off a caterpillar on a bush in mistake for a superfluous twig, for many brownish caterpillars fasten themselves by their posterior claspers and by an invisible thread of silk from their mouth, and project from the branch at a twig-like angle. An insect may be the very image of a sharp p.r.i.c.kle or a piece of soft moss; a spider may look precisely like a tiny k.n.o.b on a branch or a fragment of lichen; one of the sea-horses (_Phyllopteryx_) has frond-like ta.s.sels on various parts of its body, so that it looks extraordinarily like the seaweeds among which it lives. In a few cases, e.g. among spiders, it has been shown that animals with a special protective resemblance to something else seek out a position where this resemblance tells, and there is urgent need for observations bearing on this selection of environment.

-- 5

Mimicry in the True Sense

It sometimes happens that in one and the same place there are two groups of animals not very nearly related which are "doubles" of one another.

Investigation shows that the members of the one group, _always in the majority_, are in some way specially protected, e.g. by being unpalatable. They are the "mimicked." The members of the other group, _always in the minority_, have not got the special protection possessed by the others. They are the "mimickers," though the resemblance is not, of course, a.s.sociated with any conscious imitation. The theory is that the mimickers live on the reputation of the mimicked. If the mimicked are left alone by birds because they have a reputation for unpalatability, or because they are able to sting, the mimickers survive--although they are palatable and stingless. They succeed, not through any virtue of their own, but because of their resemblance to the mimicked, for whom they are mistaken. There are many cases of mimetic resemblance so striking and so subtle that it seems impossible to doubt that the thing works; there are other cases which are rather far-fetched, and may be somewhat of the nature of coincidences. Thus although Mr. Bates tells us that he repeatedly shot humming-bird moths in mistake for humming-birds, we cannot think that this is a good ill.u.s.tration of mimicry. What is needed for many cases is what is forthcoming for some, namely, experimental evidence, e.g. that the unpalatable mimicked b.u.t.terflies are left in relative peace while similar palatable b.u.t.terflies are persecuted. It is also necessary to show that the mimickers do actually consort with the mimicked. Some beetles and moths are curiously wasplike, which may be a great advantage; the common drone-fly is superficially like a small bee; some harmless snakes are very like poisonous species; and Mr. Wallace maintained that the powerful "friar-birds" of the Far East are mimicked by the weak and timid orioles. When the model is unpalatable or repulsive or dangerous, and the mimic the reverse, the mimicry is called "Batesian" (after Mr. Bates), but there is another kind of mimicry called Mullerian (after Fritz Muller) where the mimic is also unpalatable. The theory in this case is that the mimicry serves as mutual a.s.surance, the members of the ring getting on better by consistently presenting the same appearance, which has come to mean to possible enemies a signal, _Noli me tangere_ ("Leave me alone"). There is nothing out of the question in this theory, but it requires to be taken in a critical spirit. It leads us to think of "warning colours,"

which are the very opposite of the disguises which we are now studying.

Some creatures like skunks, magpies, coral-snakes, cobras, brightly coloured tree-frogs are obtrusive rather than elusive, and the theory of Alfred Russel Wallace was that the flaunting conspicuousness serves as a useful advertis.e.m.e.nt, impressing itself on the memories of inexperienced enemies, who soon learn to leave creatures with "warning colours" alone. In any case it is plain that an animal which is as safe as a wasp or a coral-snake can afford to wear any suit of clothes it likes.

[Ill.u.s.tration: DEAD-LEAF b.u.t.tERFLY (_Kallima Inachis_) FROM INDIA

It is conspicuous on its upper surface, but when it settles down on a twig and shows the underside of its wings it is practically invisible.

The colouring of the under surface of the wings is like that of the withering leaf; there are spots like fungas spots; and the venation of the wings suggests the mid-rib and veins of the leaf. A, showing upper surface; B, showing under surface; C, a leaf.]

[Ill.u.s.tration: PROTECTIVE RESEMBLANCE BETWEEN A SMALL SPIDER (_to the left_) AND AN ANT (_to the right_)

As ants are much dreaded, it is probably profitable to the spider to be like an ant. It will be noted that the spider has four pairs of legs and no feelers, whereas the ant has three pairs of legs and a pair of feelers.]

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Outline of Science Part 19 summary

You're reading The Outline of Science. This manga has been translated by Updating. Author(s): J. Arthur Thomson. Already has 549 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com