Home

The New York Subway Part 4

The New York Subway - novelonlinefull.com

You’re read light novel The New York Subway Part 4 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[Ill.u.s.tration: FOUR COLUMN (TOWER) VIADUCT CONSTRUCTION]

[Ill.u.s.tration: MANHATTAN VALLEY VIADUCT, LOOKING NORTH]

[Ill.u.s.tration: ERECTION OF ARCH, MANHATTAN VALLEY VIADUCT]

On the Park Avenue section from 34th Street to 41st Street two separate double-track tunnels were driven below a double-track electric railway tunnel, one on each side. The work was done from four shafts, one at each end of each tunnel. At first, top headings were employed at the north ends of both tunnels and at the south end of the west tunnel; at the south end of the east tunnel a bottom heading was used. Later, a bottom heading was also used at the south end of the west tunnel. The rock was very irregular and treacherous in character, and the strata inclined so as to make the danger of slips a serious one. The two headings of the west tunnel met in February and those of the east tunnel in March, 1902, and the widening of the tunnels to the full section was immediately begun. Despite the adoption of every precaution suggested by experience in such work, some disturbance of the surface above the east tunnel resulted, and several house fronts were damaged. The portion of the tunnel affected was bulkheaded at each end, packed with rubble and grouted with Portland cement mortar injected under pressure through pipes sunk from the street surface above. When the interior was firm, the tunnel was redriven, using much the same methods that are employed for tunnels through earth when the arch lining is built before the central core, or dumpling of earth, is removed. The work had to be done very slowly to prevent any further settlement of the ground, and the completion of the widening of the other parts of the tunnels also proceeded very slowly, because as soon as the slip occurred a large amount of timbering was introduced, which interfered seriously with the operations. After the lining was completed, Portland cement grout was again injected under pressure, through holes left in the roof, until further movement of the fill overhead was absolutely prevented.

[Ill.u.s.tration: COMPLETED ARCH AT MANHATTAN STREET]

As has been said, the tunnel between 157th Street and Fort George is the second longest two-track tunnel in the United States. It was built in a remarkably short time, considering the fact that the work was prosecuted from two portal headings and from two shafts. One shaft was at 168th Street and the other at 181st Street, the work proceeding both north and south from each shaft. The method employed for the work (Photograph on page 56) was similar to that used under Central Park. The shafts at 168th Street and at 181st Street were located at those points so that they might be used for the permanent elevator equipment for the stations at these streets. These stations each have an arch span of about 50 feet, lined with brick.

[Sidenote: _Steel Viaduct_]

The elevated viaduct construction extends from 125th Street to 133d Street and from Dyckman Street to Bailey Avenue on the western branch, and from Brook and Westchester Avenues to Bronx Park on the eastern, a total distance of about 5 miles. The three-track viaducts are carried on two column bents where the rail is not more than 29 feet above the ground level, and on four-column towers for higher structures. In the latter case, the posts of a tower are 29 feet apart transversely and 20 or 25 feet longitudinally, as a rule, and the towers are from 70 to 90 feet apart on centers. The tops of the towers have X-bracing and the connecting spans have two panels of intermediate vertical sway bracing between the three pairs of longitudinal girders. In the low viaducts, where there are no towers, every fourth panel has zigzag lateral bracing in the two panels between the pairs of longitudinal girders.

[Ill.u.s.tration: PROFILE OF HARLEM RIVER TUNNEL AND APPROACHES]

[Ill.u.s.tration: SECTION OF HARLEM RIVER TUNNEL DURING CONSTRUCTION]

[Ill.u.s.tration: a.s.sEMBLING IRON WORK ON PONTOON--HARLEM RIVER TUNNEL]

The towers have columns consisting as a rule of a 16 x 7/16-inch web plate and four 6 x 4 x 5/8-inch bulb angles. The horizontal struts in their cross-bracing are made of four 4 x 3-inch angles, latticed to form an I-shaped cross-section. The X-bracing consists of single 5 x 3-1/2-inch angles. The tops of the columns have horizontal cap angles on which are riveted the lower f.l.a.n.g.es of the transverse girders; the end angles of the girder and the top of the column are also connected by a riveted splice plate. The six longitudinal girders are web-riveted to the transverse girders. The outside longitudinal girder on each side of the viaduct has the same depth across the tower as in the connecting span, but the four intermediate lines are not so deep across the towers. In the single trestle bents the columns are the same as those just described, but the diagonal bracing is replaced by plate knee-braces.

The Manhattan Valley Viaduct on the West Side line, has a total length of 2,174 feet. Its most important feature is a two-hinged arch of 168-1/2 feet span, which carries platforms shaded by canopies, but no station buildings. The station is on the ground between the surface railway tracks. Access to the platforms is obtained by means of escalators. It has three lattice-girder two-hinge ribs 24-1/2 feet apart on centers, the center line of each rib being a parabola. Each half rib supports six spandrel posts carrying the roadway, the posts being seated directly over vertical web members of the rib. The chords of the ribs are 6 feet apart and of an H-section, having four 6 x 6-inch angles and six 15-inch f.l.a.n.g.e and web plates for the center rib and lighter sections for the outside ribs. The arch was erected without false work.

[Ill.u.s.tration: SHOWING CONCRETE OVER IRON WORK--HARLEM RIVER TUNNEL]

The viaduct spans of either approach to the arch are 46 to 72 feet long. All transverse girders are 31 feet 4 inches long, and have a 70 x 3/8-inch web plate and four 6 x 4-inch angles. The two outside longitudinal girders of deck spans are 72 inches deep and the other 36 inches. All are 3/8-inch thick and their four f.l.a.n.g.e angles vary in size from 5 x 3-1/2 to 6 x 6 inches, and on the longest spans there are f.l.a.n.g.e plates. At each end of the viaduct there is a through span with 90-inch web longitudinal girders.

Each track was proportioned for a dead load of 330 pounds per lineal foot and a live load of 25,000 pounds per axle. The axle s.p.a.cing in the truck was 5 feet and the pairs of axles were alternately 27 and 9 feet apart. The traction load was taken at 20 per cent. of the live load, and a wind pressure of 500 pounds per lineal foot was a.s.sumed over the whole structure.

[Sidenote: _Tubes under Harlem River_]

One of the most interesting sections of the work is that which approaches and pa.s.ses under the Harlem River, carrying the two tracks of the East Side line. The War Department required a minimum depth of 20 feet in the river at low tide, which fixed the elevation of the roof of the submerged part of the tunnel. This part of the line, 641 feet long, consists of twin single-track cast-iron cylinders 16 feet in diameter enveloped in a large ma.s.s of concrete and lined with the same material. The approach on either side is a double-track concrete arched structure. The total length of the section is 1,500 feet.

The methods of construction employed were novel in subaqueous tunneling and are partly shown on photographs on pages 62 and 63.

The bed of the Harlem River at the point of tunneling consists of mud, silt, and sand, much of which was so nearly in a fluid condition that it was removed by means of a jet. The maximum depth of excavation was about 50 feet. Instead of employing the usual method of a shield and compressed air at high pressure, a much speedier device was contrived.

The river crossing has been built in two sections. The west section was first built, the War Department having forbidden the closing of more than half the river at one time. A trench was dredged over the line of the tunnel about 50 feet wide and 39 feet below low water.

This depth was about 10 feet above the sub-grade of the tunnel. Three rows of piles were next driven on each side of the trench from the west bank to the middle of the river and on them working platforms were built, forming two wharves 38 feet apart in the clear. Piles were then driven over the area to be covered by the subway, 6 feet 4 inches apart laterally and 8 feet longitudinally. They were cut off about 11 feet above the center line of each tube and capped with timbers 12 inches square. A thoroughly-trussed framework was then floated over the piles and sunk on them. The trusses were s.p.a.ced so as to come between each transverse row of piles and were connected by eight longitudinal sticks or stringers, two at the top and two at the bottom on each side. The four at each side were just far enough apart to allow a special tongue and grooved 12-inch sheet piling to be driven between them. This sheathing was driven to a depth of 10 to 15 feet below the bottom of the finished tunnel.

A well-calked roof of three courses of 12-inch timbers, separated by 2-inch plank, was then floated over the piles and sunk. It had three timber shafts 7 x 17 feet in plan, and when it was in place and covered with earth it formed the top of a caisson with the sheet piling on the sides and ends, the latter being driven after the roof was in place. The excavation below this caisson was made under air pressure, part of the material being blown out by water jets and the remainder removed through the airlocks in the shafts. When the excavation was completed, the piles were temporarily braced and the concrete and cast-iron lining put in place, the piles being cut off as the concrete bed was laid up to them.

The second or eastern section of this crossing was carried on by a modification of the plan just mentioned. Instead of using a temporary timber roof on the side walls, the permanent iron and concrete upper half of the tunnels was employed as a roof for the caisson. The trench was dredged nearly to sub-grade and its sides provided with wharves as before, running out to the completed half of the work. The permanent foundation piles were then driven and a timber frame sunk over them to serve as a guide for the 12-inch sheet piling around the site. Steel pilot piles with water jets were driven in advance of the wood-sheet piles, and if they struck any boulders the latter were drilled and blasted. The steel piles were withdrawn by a six-part tackle and hoisting engine, and then the wooden piles driven in their place.

When the piling was finished, a pontoon 35 feet wide, 106 feet long, and 12 feet deep was built between the wharves, and upon a separate platform or deck on it the upper half of the cast-iron sh.e.l.ls were a.s.sembled, their ends closed by steel-plate diaphragms and the whole covered with concrete. The pontoon was then submerged several feet, parted at its center, and each half drawn out endwise from beneath the floating top of the tunnel. The latter was then loaded and carefully sunk into place, the connection with the sh.o.r.e section being made by a diver, who entered the roof through a special opening. When it was finally in place, men entered through the sh.o.r.e section and cut away the wood bottom, thus completing the caisson so that work could proceed below it as before. Three of these caissons were required to complete the east end of the crossing.

[Ill.u.s.tration: LOOKING UP BROADWAY FROM TRINITY CHURCH--SHOWING WORKING PLATFORM AND GAS MAINS TEMPORARILY SUPPORTED OVERHEAD]

The construction of the approaches to the tunnel was carried out between heavy sheet piling. The excavation was over 40 feet deep in places and very wet, and the success of the work was largely due to the care taken in driving the 12-inch sheet piling.

[Sidenote: _Methods of Construction Brooklyn Extension_]

A number of interesting features should be noted in the methods of construction adopted on the Brooklyn Extension.

The types of construction on the Brooklyn Extension have already been spoken of. They are (1) typical flat-roof steel beam subway from the Post-office, Manhattan, to Bowling Green; (2) reinforced concrete typical subway in Battery Park, Manhattan, and from Clinton Street to the terminus, in Brooklyn; (3) two single track cast-iron-lined tubular tunnels from Battery Park, under the East River, and under Joralemon Street to Clinton Street, Brooklyn.

Under Broadway, Manhattan, the work is through sand, the vehicular and electric street car traffic, the network of subsurface structures, and the high buildings making this one of the most difficult portions of the road to build. The street traffic is so great that it was decided that during the daytime the surface of the street should be maintained in a condition suitable for ordinary traffic. This was accomplished by making openings in the sidewalk near the curb, at two points, and erecting temporary working platforms over the street 16 feet from the surface. The excavations are made by the ordinary drift and tunnel method. The excavated material is hoisted from the openings to the platforms and pa.s.sed through chutes to wagons. On the street surface, over and in advance of the excavations, temporary plank decks are placed and maintained during the drifting and tunneling operations, and after the permanent subway structure has been erected up to the time when the street surface is permanently restored. The roof of the subway is about 5 feet from the surface of the street, which has made it necessary to care for the gas and water mains. This has been done by carrying the mains on temporary trestle structures over the sidewalks. The mains will be restored to their former position when the subway structure is complete.

From Bowling Green, south along Broadway, State Street and in Battery Park, where the subway is of reinforced concrete construction, the "open cut and cover" method is employed, the elevated and surface railroad structures being temporarily supported by wooden and steel trusses and finally supported by permanent foundations resting on the subway roof. From Battery Place, south along the loop work, the greater portion of the excavation is made below mean high-water level, and necessitates the use of heavy tongue and grooved sheeting and the operation of two centrifugal pumps, day and night.

The tubes under the East River, including the approaches, are each 6,544 feet in length. The tunnel consists of two cast-iron tubes 15-1/2 feet diameter inside, the lining being constructed of cast-iron plates, circular in shape, bolted together and reinforced by grouting outside of the plates and beton filling on the inside to the depth of the f.l.a.n.g.es. The tubes are being constructed under air pressure through solid rock from the Manhattan side to the middle of the East River by the ordinary rock tunnel drift method, and on the Brooklyn side through sand and silt by the use of hydraulic shields. Four shields have been installed, weighing 51 tons each. They are driven by hydraulic pressure of about 2,000 tons. The two shields drifting to the center of the river from Garden Place are in water-bearing sand and are operated under air pressure. The river tubes are on a 3.1 per cent. grade and in the center of the river will reach the deepest point, about 94 feet below mean high-water level.

The typical subway of reinforced concrete from Clinton Street to the Flatbush Avenue terminus is being constructed by the method commonly used on the Manhattan-Bronx route. From Borough Hall to the terminus the route of the subway is directly below an elevated railway structure, which is temporarily supported by timber bracing, having its bearing on the street surface and the tunnel timbers. The permanent support will be masonry piers built upon the roof of the subway structure. Along this portion of the route are street surface electric roads, but they are operated by overhead trolley and the tracks are laid on ordinary ties. It has, therefore, been much less difficult to care for them during the construction of the subway. Work is being prosecuted on the Brooklyn Extension day and night, and in Brooklyn the excavation is made much more rapidly by employing the street surface trolley roads to remove the excavated material. Spur tracks have been built and flat cars are used, much of the removal being done at night.

CHAPTER III

POWER HOUSE BUILDING

The power house is situated adjacent to the North River on the block bounded by West 58th Street, West 59th Street, Eleventh Avenue, and Twelfth Avenue. The plans were adopted after a thorough study by the engineers of Interborough Rapid Transit Company of all the large power houses already completed and of the designs of the large power houses in process of construction in America and abroad. The building is large, and when fully equipped it will be capable of producing more power than any electrical plant ever built, and the study of the designs of other power houses throughout the world was pursued with the princ.i.p.al object of reducing to a minimum the possibility of interruption of service in a plant producing the great power required.

The type of power house adopted provides for a single row of large engines and electric generators, contained within an operating room placed beside a boiler house, with a capacity of producing, approximately, not less than 100,000 horse power when the machinery is being operated at normal rating.

[Sidenote: _Location and General Plan of Power House_]

The work of preparing the detailed plans of the power house structure was, in the main, completed early in 1902, and resulted in the present plan, which may briefly be described as follows: The structure is divided into two main parts--an operating room and a boiler house, with a part.i.tion wall between the two sections. The face of the structure on Eleventh Avenue is 200 feet wide, of which width the boiler house takes 83 feet and the operating section 117 feet. The operating room occupies the northerly side of the structure and the boiler house the southerly side. The designers were enabled to employ a contour of roof and wall section for the northerly side that was identical with the roof and wall contour of the southerly side, so that the building, when viewed from either end, presents a symmetrical appearance with both sides of the building alike in form and design.

The operating room section is practically symmetrical in its structure, with respect to its center; it consists of a central area, with a truss roof over same along with galleries at both sides. The galleries along the northerly side are primarily for the electrical apparatus, while those along the southerly side are given up chiefly to the steam-pipe equipment. The boiler room section is also practically symmetrical with respect to its center.

A sectional scheme of the power house arrangement was determined on, by which the structure was to consist of five generating sections, each similar to the others in all its mechanical details; but, at a later date, a sixth section was added, with s.p.a.ce on the lot for a seventh section. Each section embraces one chimney along with the following generating equipment:--twelve boilers, two engines, each direct connected to a 5,000 kilowatt alternator; two condensing equipments, two boiler-feed pumps, two smoke-flue systems, and detail apparatus necessary to make each section complete in itself. The only variation is the turbine plant hereafter referred to. In addition to the s.p.a.ce occupied by the sections, an area was set aside, at the Eleventh Avenue end of the structure, for the pa.s.sage of the railway spur from the New York Central tracks. The total length of the original five-section power house was 585 feet 9-1/2 inches, but the additional section afterwards added makes the over all length of the structure 693 feet 9-3/4 inches. In the fourth section it was decided to omit a regular engine with its 5,000 kilowatt generator, and in its place subst.i.tute a 5,000 kilowatt lighting and exciter outfit.

Arrangements were made, however, so that this outfit can afterward be replaced by a regular 5,000 kilowatt traction generator.

[Ill.u.s.tration: CROSS SECTION OF POWER HOUSE IN PERSPECTIVE]

The plan of the power station included a method of supporting the chimneys on steel columns, instead of erecting them through the building, which modification allowed for the disposal of boilers in s.p.a.ces which would otherwise be occupied by the chimney bases. By this arrangement it was possible to place all the boilers on one floor level. The economizers were placed above the boilers, instead of behind them, which made a material saving in the width of the boiler room. This saving permitted the setting aside of the aforementioned gallery at the side of the operating room, closed off from both boiler and engine rooms, for the reception of the main-pipe systems and for a pumping equipment below it.

The advantages of the plan can be enumerated briefly as follows: The main engines, combined with their alternators, lie in a single row along the center line of the operating room with the steam or operating end of each engine facing the boiler house and the opposite end toward the electrical switching and controlling apparatus arranged along the outside wall. Within the area between the boiler house and operating room there is placed, for each engine, its respective complement of pumping apparatus, all controlled by and under the operating jurisdiction of the engineer for that engine. Each engineer has thus full control of the pumping machinery required for his unit.

Symmetrically arranged with respect to the center line of each engine are the six boilers in the boiler room, and the piping from these six boilers forms a short connection between the nozzles on the boilers and the throttles on the engine. The arrangement of piping is alike for each engine, which results in a piping system of maximum simplicity that can be controlled, in the event of difficulty, with a degree of certainty not possible with a more complicated system. The main parts of the steam-pipe system can be controlled from outside this area.

The single tier of boilers makes it possible to secure a high and well ventilated boiler room with ventilation into a story constructed above it, aside from that afforded by the windows themselves. The boiler room will therefore be cool in warm weather and light, and all difficulties from escaping steam will be minimized. In this respect the boiler room will be superior to corresponding rooms in plants of older construction, where they are low, dark, and often very hot during the summer season. The placing of the economizers, with their auxiliary smoke flue connections, in the economizer room, all symmetrically arranged with respect to each chimney, removes from the boiler room an element of disturbance and makes it possible to pa.s.s directly from the boiler house to the operating room at convenient points along the length of the power house structure. The location of each chimney in the center of the boiler house between sets of six boilers divides the coal bunker construction into separate pockets by which trouble from spontaneous combustion can be localized, and, as described later, the divided coal bunkers can provide for the storage of different grades of coal. The unit basis on which the economizer and flue system is constructed will allow making repairs to any one section without shutting off the portions not connected directly to the section needing repair.

The floor of the power house between the column bases is a continuous ma.s.s of concrete nowhere less than two feet thick. The ma.s.sive concrete foundations for the reciprocating engines contain each 1,400 yards of concrete above mean high water level, and in some cases have twice as much below that point. The total amount of concrete in the foundations of the finished power house is about 80,000 yards.

[Ill.u.s.tration: CROSS-SECTION OF POWER HOUSE]

Water for condensing purposes is drawn from the river and discharged into it through two monolithic concrete tunnels parallel to the axis of the building. The intake conduit has an oval interior, 10 x 8-1/2 feet in size, and a rectangular exterior cross-section; the outflow tunnel has a horseshoe-shape cross-section and is built on top of the intake tunnel. These tunnels were built throughout in open trench, which, at the sh.o.r.e end, was excavated in solid rock. At the river end the excavation was, at some places, almost entirely through the fill and mud and was made in a cofferdam composed chiefly of sheet piles.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Martial Peak

Martial Peak

Martial Peak Chapter 5799: Plan Author(s) : Momo,莫默 View : 15,177,964
Crazy Leveling System

Crazy Leveling System

Crazy Leveling System Chapter 1013 Author(s) : Crazy Meng Meng, 疯狂的萌萌 View : 3,020,425

The New York Subway Part 4 summary

You're reading The New York Subway. This manga has been translated by Updating. Author(s): Interborough Rapid Transit Company. Already has 593 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com