Home

The Nature of Animal Light Part 5

The Nature of Animal Light - novelonlinefull.com

You’re read light novel The Nature of Animal Light Part 5 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Steady sources of light can be more easily measured and we have two records of the light intensity from luminous organisms with continuous light. One of these is a fish, _Photoblepharon palpebratus_, with a large luminous organ under the eye, of flattened oval shape, 11 5 mm., which glows continuously without change of intensity. The organ can be darkened by a screen similar to an eyelid which pulls up over it. Steche (1909) reports the intensity to be .0024 M.K.[3]

[3] The metre-kerze is a unit of illumination, not of intensity, and is incorrectly used by Steche.

Luminous bacteria probably glow with less intensity than any other organism. The light from a single organism cannot be seen but that from a colony is visible to the dark-adapted eye. Even so we must remember that the eye is an exceedingly delicate instrument which can detect very small energy changes. The "minimum radiation visually perceptible" has been calculated by Reeves (1917) to be in the neighborhood of 18 10^{-10} ergs per second and the light from a small colony of luminous bacteria represents little more radiation than this.

Lode (1904, 1908), by a modified grease spot photometer method, ascertained that the light of his brightest bacterial colony of _Vibrio rumple_ had an intensity of 7.85 10^{-10} H.K. per sq. mm. or 0.785 H.K. per 1000 sq. metres (=0.562 German-normal candles per 1000 sq.

metres). In round numbers this is about one German-normal candle per 2000 sq. metres, or two to three times this area for the light from an ordinary stearin candle. Lode calculated that the dome of St. Peter's at Rome, if covered with bacteria, would give little more light than a common stearin candle. An ordinary room of 50 sq. metres wall and ceiling area would give out only 0.039 German-normal candle. It does not seem likely that luminous bacteria will ever come into vogue for illuminating purposes. Friedberger and Doepner (1907) by a photographic method, not entirely free from error, found that one square millimetre of lighting surface of a bouillon culture of photobacteria gave 6.8 10^{-9} German-normal candles, about ten times Lode's value. Even at this rate commercial lighting by luminous bacteria does not appear a promising field for investors.



To sum up, we may say that light from animal sources is in no way different from light of ordinary sources, except in intensity and spectral extent. It is all visible light, containing no infra-red or ultra-violet radiation or rays which are capable of penetrating opaque objects. It is not polarized as produced, but may be polarized by pa.s.sing through a Nichol prism. Like ordinary light, animal light will also cause fluorescence and phosph.o.r.escence of substances, affect a photographic plate, cause marked heliotropism of plant seedlings (Nadson, 1903) and stimulate the formation of chlorophyll (Issatschenko, 1903, 1907). Because of the weakness of bacterial light, etiolated seedlings do not become green to the eye (Molisch, 1912 book), but a small amount of chlorophyll is formed which can be recognized by the spectroscope because of its absorption bands.

CHAPTER IV

STRUCTURE OF LUMINOUS ORGANS

The production of light is the converse of the detection of light. In the first case chemical energy is converted into radiant energy; in the second case radiant energy is converted into chemical energy. The lantern of the firefly is an organ of _chemi-photic_ change; the eye is an organ of _photo-chemical_ change. While it is theoretically probable that all reactions which proceed in one direction under the influence of light, will proceed in the opposite direction with the evolution of light, the formation of luciferin from oxyluciferin (described in Chapter VI) is the only one definitely known. Perhaps we may place in this category also the instances of photoluminescence, but the chemical reaction involved cannot be pointed out.

We know of no animal whose eyes, the organs, _par excellence_, of photochemical change, give off light in the dark. All cases of luminous eyes have been conclusively shown to be purely reflection phenomena. The eyes of a cat only glow if some stray light is present which may enter and be reflected out again. Photochemical reactions and chemiluminescent reactions do have this in common, however, that they are largely but not exclusively oxidations. Whether all photochemical changes in the eyes in animals require oxygen or not, is unknown, but all animal light-producing reactions, without exception, are oxidations, and light is only produced if oxygen is present. Some material is oxidized.

In general, we may divide luminous organisms into two great cla.s.ses according as the oxidizable material is burned within the cell where it is formed or is secreted to the exterior and is burned outside--intracellular and extracellular luminescence. Many animals with intracellular luminescence have quite complicated luminous organs. It is an interesting fact that a great similarity may be observed between the evolution of the complex organs of vision and of these complicated organs. In the simplest unicellular forms certain structures within the cell serve as the photochemical detectors of light, while in luminous protozoa, similarly, granules scattered throughout the cell are oxidized with light production. In the higher forms the eye contains groups of photosensitive cells connected with afferent nerves, lenses, and accessory structures for properly adjusting the light, while luminous organs contain groups of photogenic cells in connection with efferent nerves, lenses, and accessory structures for properly directing the light. It is interesting to note that in the two groups where the eye has attained its highest development, the cephalopods and vertebrates, here also the luminous organ is found in greatest complexity and perfection. In intermediate stages of evolution the eye and luminous organ so closely approach each other in structure that it is still a mooted question whether certain organs found in worms and crustacea are intended for receiving or producing light.

We may also divide luminous forms into two groups according as the oxidation of luminous material goes on continuously, independently of any stimulation of the organism; or is intermittent, oxidation and luminescence occurring only as a result of stimulation, using the word "stimulation" in the same sense in which it is used in connection with nerve or muscle tissue. Bacteria, fungi, and a few fish produce light continuously and independently of stimulation. Its intensity varies only over long periods of time and is dependent on the nature of the nutrient medium or general physiological condition of the organism. All other forms give off no light until they are stimulated. Stimulation may of course come from the inside (nerves) or outside. Only under unfavorable conditions, such as will eventually lead to the destruction of the luminous cells, do these forms give off a continuous light. This has often been spoken of as the "death glow," and is to be compared with _rigor_ in muscle tissue.

Some of the fish which produce a continuous light possess a movable screen similar to an eyelid which can be drawn across the organ, thus shutting off the light, so that the animal appears to belong to the group which flashes on stimulation. This is true of _Photoblepharon_, while _Anomalops_ can rotate the light organ itself downward, so as to bring the lighting surface against the body wall and thus cut off the light (Steche, 1909). Other fish (_Monocentris_) are unable to "turn off" their light.

Animals which flash spontaneously on stimulation through nerves from within, possess a very varied rhythm. The different species of fireflies can be distinguished by the character of their flashing (McDermott, 1910-17; Mast, 1912). Fig. 16 shows the method of flashing of some common eastern North America species. The glowworm light lasts for many seconds and then dies out. This interval of darkness persists for some minutes and is then followed by another period of glowing. Some fireflies have a light which may be described as partially intermittent. It lasts for hours, but may become more dim or be intensified on stimulation.

[Ill.u.s.tration: FIG. 16.--Chart showing relative intensities and durations of flashes of American fireflies (_after McDermott_). One cm.

vertically = approximately 0.02 candle power; one cm. horizontally = approximately one second. The flash of the males (?) is at the left; that of females (?) at right of chart.]

Some forms only produce light at certain seasons of the year. According to Giesbrecht (1895) this is true of the copepods, which only light in summer and autumn, and according to Greene (1899) in the toad-fish; _Porichthys_, which can only be stimulated to luminesce during the sp.a.w.ning season in spring and early summer.

Some animals possess a periodicity of luminescence. They only luminesce at night and fail to respond to stimulation or are difficult to stimulate during the day. Bright light has an inhibiting effect. Perhaps correlated with this is the fact that most luminous forms are strongly negatively heliotropic. Fireflies lie hidden in the day, to appear about dusk and the ostracod crustacean, _Cypridina_, is difficult to obtain on moonlight nights.

The Ctenoph.o.r.es were the first forms in which the inhibiting effect of light was noticed. This was described by Allman (1862) and has been confirmed by a number of observers, especially Peters (1905). Ma.s.sart found that _Noctiluca_ was difficult to stimulate during the day and _Ceratium_, according to both Zacharias (1905) and Moore (1908), only luminesces at night, or if kept in darkness, for some little time.

Crozier[4] finds a persistent day-night rhythm of light production when _Ptychodera_, a balanoglossid, is maintained for eight days in continued darkness. The animal is difficult to stimulate during the period which corresponds to day and luminesces brilliantly and at the slightest touch during the period which corresponds to night.

On the other hand, a great many forms are able to luminesce quite independently of previous illumination. According to Crozier[4]

_Chaetopterus_ luminescence is not affected by an exposure to 3000 metre-candles for six hours.

[4] Private communication.

In the case of animals with extracellular luminescence we may speak of luminous secretions and true luminous glands. A large number of forms possess luminous glands or gland cells, including some of the _medusae_, the hydroids (probably), the pennatulids (?), the molluscs (_Pholas_ and _Phyllirhoe_) (probably), some cephalopods (_Heteroteuthis_ and _Sepietta_), most annelids, ostracods, copepods, some schizopods (_Gnathophausia_) and decapod (_Heterocarpus_ and _Aristeus_) crustaceans, all myriapods, and the balanoglossids. The remaining organisms burn their material within the cell. These include the bacteria, fungi, protozoa, some medusae (?), ctenoph.o.r.es (probably), most cephalopods, a few annelids (_Tomopterus_ (?)), ophiuroids (?), some schizopod (_Nyctiphanes_, _Euphasia_, _Nematocelis_, _Stylochiron_) and decapod (_Sergestes_) crustacea, all(?) insects, _Pyrosoma_, and fishes (_selachians_ and _teleosts_). It is among this latter type that the most complicated luminous organs have been developed. While a description of all the types of luminous organs and luminous structures cannot be attempted here (excellent descriptions have been given by Dahlgren and Mangold) it is necessary to understand the structural conditions in a few of the forms whose physiology has attracted most attention.

Luminous bacteria are so small that the light from a single individual cannot be seen. It is almost impossible to make out structural differences within the cell and we cannot definitely state in just what special region, if any, the luminescence is produced. We do know that the light is intracellular and that filtration of the bacteria from their culture medium gives a dark sterile filtrate absolutely free from any luminous secretion.

Among protozoa, in certain forms at least, it is easy to observe that luminescence is connected with globules or granules which were considered by the earlier observers to be oil droplets. Thus, in _Noctiluca_ (Figs. 17 and 18), when the animal is violently stimulated or in the presence of reagents which slowly kill it, the whole interior appears a ma.s.s of starry points of light which can be traced to minute granules along the strands of protoplasm (Quatref.a.ges, 1850).

[Ill.u.s.tration: FIG. 17.--_Noctiluca miliaris_, showing photogenic granules in cytoplasm. _n_, nucleus; _c_, cytoplasmic strands containing photogenic (large) and other (small) granules; _p_, pharynx; _f_, flagellum; _o_, oral groove; _t_, tentacle; _s_, spines at base of tentacle; _v_, vacuoles. _Drawn by E. B. Harvey._]

[Ill.u.s.tration: FIG. 18.--_Noctiluca miliaris_ as it appears during luminescence (_after Quatref.a.ges_). Upper left and middle, low power; below, high power; upper right, a crushed fragment still luminescent.]

Turning to the multicellular forms, we find the simplest development of luminosity in those animals which possess gland cells producing a luminous secretion. These cells may be scattered over the surface of the animal as in _Chaetopterus_ (Fig. 19) or _Cavernularia_, or restricted to certain areas [_Pholas_, (Fig. 19),] or more definitely localized to form an isolated group of gland cells as in _Cypridina_. True multicellular glands also occur. In every case, however, we find that the luminosity of these uni- or multicellular glands is connected with the presence of granules. They are often spoken of as _luciferine granules_, although it is not certain whether they are made up of luciferin or luciferase (see Chapter IV) or both. They are most similar to the zymogen granules found so abundantly in gland cells and thought to be the precursors of various enzymes. According to Dahlgren (1915), the luciferine granules stain blue-black by iron haematoxylon after fixation at the boiling point, and photogenic cells can be detected by this method of selective staining. Dubois (1914, book), who regards them as examples of _bioprotein_, comparable to the chondriosomes and handed on from one generation to another, gives them the name of _vacuolides_ or _macrozymases_. In some forms he has described their transformation into crystals and believed at one time that animal light was a crystalloluminescence. His figures of the crystal transformation are not very convincing. Pierantoni (1915) has considered the granules to be _symbiotic_ luminous bacteria, but this is certainly not the case.

[Ill.u.s.tration: FIG. 19.--Diagram of _Pholas_ (right) and _Chaetopterus_ (left) to show distribution of luminous areas (_after Panceri_).]

The light of _Chaetopterus_ comes from a material mixed with a mucous secretion formed over almost the whole body surfaces of the animal. A section of the epithelium shows large mucous-producing cells and smaller granule-containing light cells (Fig. 20). These appear to be under nervous control, as a strong stimulation in one part of the body causes luminescence which spreads over the whole surface of the worm. The animal becomes fatigued rather readily, however. In the pennatulids, such as _Cavernularia_, we have also the formation of a luminous secretion over the whole surface of the body and the individual animals in this colonial form are also connected with nerves. A stimulation in any local region, as Panceri (1872) first showed (Fig. 21), will cause a wave of luminosity to spread from this point until it extends over the whole surface of the colony. In _Pennatula_ the rate of this luminous wave is about 5 cm. per second.

[Ill.u.s.tration: FIG. 20.--Sectional view of the luminous epithelium of _Chaetopterus_ (_after Dahlgren_). _cu_, cuticle; _l. c._, light cells, some showing discharge of secretion; _d. l. c._, discharged and emptied light cells; _m. c._, mucous cells.]

[Ill.u.s.tration: FIG. 21.--Diagram of _Pennatula_, showing by arrows the course of a wave of luminosity which spreads over the colony from the point stimulated (s) (_after Panceri_).]

_Pholas dactylus_ possesses similar light cells to those of _Chaetopterus_, but they are restricted to narrow bands on the siphon and mantle and a pair of triangular spots near the retractor muscles. Nerves pa.s.s to the luminous regions.

In many luminous animals the light secretion formed over the surface of the body is small in amount and adheres to the animal because it is embedded in the mucous skin secretions. In those forms which possess a true localized light gland the luminous secretion when expelled into the sea water (if the animal be a marine form) may persist as a luminous streak for some time and exhibit diffusion and convection movements. The most beautiful examples of luminous secretions are found among the ostracod crustacea.

[Ill.u.s.tration: FIG. 22.--Luminous gland of _Cypridina hilgendorfii_ (_after Yatsu_). 2, longitudinal section. 4, transverse section.]

[Ill.u.s.tration: FIG. 23.--Single enlarged gland cell of _Cypridina_ (_after Dahlgren_). P, nucleus and plasmasome; C, cytoplasm; F, secretion fibrils; D, reservoir duct filled with large yellow granules; O, valve-like outer opening of cell at surface of body.]

In _Cypridina hilgendorfii_ the luminous gland is situated on the upper lip near the mouth. It is made up of elongate (some 0.7 mm. in length), spindle-shaped cells, each one of which opens by a separate pore with a kind of valve. The openings are arranged on five protuberances. Muscle fibres pa.s.s between the gland cells in such a way that by contracting the secretion can be forced out. In the sea water the secretion luminesces brilliantly and the j.a.panese call these forms _umi hotaru_, or marine fireflies. Fig. 22 is a diagram showing the structure.

Watanabe (1897), who first studied this form, and also Yatsu (1917) have described two kinds of granule-containing cells, one with large yellow globules, 4-10 in diameter (Fig. 23), the other with small colorless granules 0.5, in diameter. I have observed in the living form these two types and also large colorless globules of the same size as the yellow globules. All dissolve when extruded into the sea water. Dahlgren[5] has described from sections four types of cells containing (1) large globules, (2) small granules, (3) a fat-like material, (4) a mucous material. Just what the significance and nature of these types of substance is cannot be stated at present. At least one, probably two, are concerned in light production. The others may possibly form digestive fluids which act on the food of the animal.

[5] Private communication soon to be published.

Turning now to the animals possessing light cells with intracellular luminescence we find in general that such light cells are localized to form definite light organs and that these may be single, as in the common fireflies, paired, as the prothoracic light organs of _Pyrophorus_, or scattered over the surface of the body, as in so many shrimps, cephalopods and fishes, when they are often called photoph.o.r.es.

The light cells proper are often a.s.sociated with reflectors, lenses, opaque screens and color screens.

[Ill.u.s.tration: FIG. 24.--Distal portion of malpighian tubule of _Bolitophila_, showing modification to form photogenic organ (_after Wheeler and Williams_). _MT_{1}_, _MT_{4}_, malpighian tubules forming photogenic organ; _R_, reflector; _M_, muscle; _T_, trachea.]

The insects possess the simplest types of intracellular light organs, a ma.s.s of photogenic cells, which, in the common firefly (_a lampyrid beetle_) of Eastern North America, has probably been developed from the fat body, while in the New Zealand glowworm, the larva of a tipulid fly (_Bolitophila luminosa_), part of the Malpighian tubule cells have acquired photogenic power (Wheeler and Williams, 1915). This is ill.u.s.trated in Fig. 24.

The photogenic organ of the firefly is made up of two kinds of cells, a dorsal ma.s.s of small cells several layers deep, the reflector layer, and a ventral ma.s.s of large cells with indistinct boundaries, the photogenic layer (Fig. 25). The photogenic cells contain a ma.s.s of granules, spherical in the male and short rods in the female. The photogenic cells are divided into groups by large tracheal trunks which pa.s.s into the light organ and branch to form tracheoles connected with tracheal end cells. The exact distribution varies in different species, but in all the arrangement is such as to give a very abundant oxygen supply. Each group of photogenic cells is surrounded by a clear ectoplasm containing no granules. The tracheoles pa.s.s through this and either end openly within the photogenic cells or anastomose with tracheoles from neighboring tracheae. Nerves, but no blood-vessels--which are absent in insects--enter the organ. It is difficult to determine if the nerves supply the tracheal end cells or the photogenic cells.

[Ill.u.s.tration: FIG. 25.--Sectional view of photogenic organ of the firefly (_after Williams_), showing reflector or crystal layer (_U_) above and photogenic cells (_P_) below. _C_, cuticula; _T_, trachea; _c_, capillaries of tracheal end cells; _H_, hypodermis; _EC_, tracheal end cells; _N_, nerve.]

The dorsal reflecting layer is made up of cells containing numerous minute crystals of some purin base, either xanthin or urates, or both.

They have a white milky appearance and while they are certainly not good reflectors in the optical sense, they do act as a white background, scatter incident light, and partially prevent its penetration to the internal organs of the firefly. Although a few crystals similar to those of the reflector layer are found in the photogenic cells and in other cells of the body, it is known that the photogenic cells are not transformed into the reflector cells. The two layers are distinct and permanent from an early stage in development.

Curiously enough, the light organ of the larva of the firefly (glowworm) is quite distinct from that of the adult. Like so many other structures in insects, the adult organ is developed anew from potential photogenic cells during the pupal period. Even the egg of the firefly is luminous and glows with a steady light, and during the pupal period light may sometimes be seen coming from the thoracic region.

In the firefly there is no true lens, the light merely shining through the cuticle which is transparent over the light organ, whereas over the rest of the body it is dark and pigmented. In the deep sea shrimp, _Acanthephyra debelis_, with light organs scattered over the surface of the body, the cuticle covering the light organ forms a concavo-convex lens, behind which are the photogenic cells (Kemp, 1910). As may be seen from Fig. 26, the lens is made up of three layers which suggests that it may be corrected for chromatic aberration--a veritable "achromatic triplet." In an allied form, _Sergestes_ (Fig. 27), the lens is of two layers and double convex. Optical studies of these lanterns have been made by Trojan (1907). The course of the light rays is shown in Fig. 28.

The lens of these organs is also bluish in color which suggests that they may serve also as color filters. Behind the photogenic cells is a ma.s.s of connective tissues through which enters the nerve, for the light of these organs is under the control of the animal and may be flashed "at will."

[Ill.u.s.tration: FIG. 26.--Sectional view of photogenic organ of _Acanthephyra debilis_ (_after Kemp_). _n_, nerve; _s. l._, sheathing layer of cells; _g_, cone of refractive granules at end of nerve strand; _c_, cellular layer; _i. l._, _m. l._, _o. l._, inner, middle and outer layer of lens.]

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Martial King's Retired Life

Martial King's Retired Life

Martial King's Retired Life Book 15: Chapter 101 Author(s) : Lee Taibai, Lee太白 View : 1,711,338
Chaotic Sword God

Chaotic Sword God

Chaotic Sword God Chapter 3835: Severed Arm Author(s) : Xin Xing Xiao Yao View : 25,201,798
The Grand Secretary's Pampered Wife

The Grand Secretary's Pampered Wife

The Grand Secretary's Pampered Wife Chapter 742.1: Overprotective Brother Author(s) : Pian Fang Fang, 偏方方, Folk Remedies, Home Remedy View : 571,920
Legend of Swordsman

Legend of Swordsman

Legend of Swordsman Chapter 6353: Star-Grade Special Life Form Author(s) : 打死都要钱, Mr. Money View : 10,250,037
Supreme Magus

Supreme Magus

Supreme Magus Chapter 3414 Thank You (Part 1) Author(s) : Legion20 View : 7,391,195

The Nature of Animal Light Part 5 summary

You're reading The Nature of Animal Light. This manga has been translated by Updating. Author(s): E. Newton Harvey. Already has 516 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com