Home

The life of Isambard Kingdom Brunel, Civil Engineer Part 12

The life of Isambard Kingdom Brunel, Civil Engineer - novelonlinefull.com

You’re read light novel The life of Isambard Kingdom Brunel, Civil Engineer Part 12 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Notwithstanding these favourable results, the change in regard to the gauge did not pa.s.s unquestioned. Attacks were made on it in various quarters, and considerable excitement was caused among the shareholders and the public.

It was a.s.serted that the width of 4 feet 8 inches was exactly the proper width for all railways, and that a deviation from it was tantamount to the abandonment of an established principle which experience had proved to be correct. It was further alleged that the cost of all the works connected with the formation of the line would be greatly increased; that the carriages must be stronger and heavier, that they would not run round the curves, and would be liable to run off the rails, and particularly that the increased length of the axles would render them liable to be broken. These were not advanced as difficulties which, existing in all railways, might be somewhat increased by the increase of gauge, but they were a.s.sumed to be peculiar to the broad gauge, and fatal to it. Some urgent representations appear to have been made to the Directors; for in their report of August 15, 1838, they state, that as the gauge and the permanent way, which had also been the subject of adverse criticism, had been sources of some anxiety to them, they had applied to three of the most eminent authorities on the construction and working of railways--Mr. James Walker, President of the Inst.i.tution of Civil Engineers, Mr. Robert Stephenson, and Mr. Nicholas Wood, of Newcastle-on-Tyne--to undertake a thorough inspection of the line, to investigate the working of it, and to give their opinion on the plan adopted.

Mr. Walker and Mr. Stephenson declined the task, on the ground that they did not wish to become embroiled in professional controversy, but Mr.

Wood undertook it; and a similar commission was afterwards given to Mr.

Hawkshaw.



In order to put the shareholders fully in possession of all the information in their power, the Directors published a very complete statement by Mr. Brunel on the arrangements adopted by him. It will be seen that in this report, which is given in Appendix I. p. 525, he states his original arguments, and answers the objections brought against his plans; and he contends that the result of experience establishes their success. In regard to the gauge, he says:--

Everything that has occurred in the practical working of the line confirms me in my conviction that we have secured a most valuable power to the Great Western Railway, and that it would be folly to abandon it.

But the two engineers, to whom the consideration of this matter had been referred, differed materially in opinion from Mr. Brunel. The nature of their investigations and reports, and of Mr. Brunel's replies, is stated in the extracts given below from the report of the Directors in January 1839.

In addition to the question of gauge, another important matter referred to the consideration of Mr. Wood and Mr. Hawkshaw was the construction of the permanent way.[50] On the Great Western a construction had been introduced by Mr. Brunel differing materially from that ordinarily used; and as defects had shown themselves after the opening of the railway, some anxiety was felt in reference to it by many of the shareholders.

The subject of the permanent way adopted on the Great Western Railway does not necessarily belong to the gauge question, and would, perhaps, have been more properly considered in the chapter on Mr. Brunel's railway works; but, as a matter of fact, the controversy concerning it became so interwoven with that of the broad gauge, that in a historical account it would be difficult to separate them.

It appeared to Mr. Brunel that, with a view of applying the engine power to the greatest advantage, particularly in attaining high speed, more attention ought to be paid to the construction of the permanent way. He says, in a report dated February 1837:--

It appears to be frequently forgotten that although lofty embankments and deep cuttings, bridges, viaducts, and tunnels are all necessary for forming the level surface upon which the rails are to be laid, yet they are but the means for obtaining that end; and the ultimate object for which these great works are constructed, and for which the enormous expenses consequent upon them are incurred, consits merely of four level parallel lines, not above two inches wide, of a hard and smooth surface; and upon the degree of hardness, smoothness, and parallelism (which last has. .h.i.therto been very much neglected) of these four lines depend the speed and cost of transport, and in fact the whole result aimed at....

In forming all my plans I have looked to the perfection of the surface on which the carriages are to run, as the great and ultimate desideratum; and in the detail of construction of this last operation, without which all the previous labour is comparatively wasted, I have always contemplated introducing all the perfection of materials and workmanship of which it is capable.

With a view to improvement on this point, Mr. Brunel considered it would be advantageous if two important changes were made. He proposed, in the first place, to abolish the use of stone blocks for the rails to rest on, and to subst.i.tute timber; and, secondly, to apply the support uniformly and continuously along the whole length of the rails, instead of only at intervals.

The first of these changes, namely, the subst.i.tution of timber for stone, was not wholly new, for transverse wood sleepers were often used in exceptional situations; but it was the general opinion that stone, where it could be applied, formed the best support for the rails,[51]

and the exclusive employment of timber was considered a great innovation.

The other principle, that of 'continuous bearing,' was similar to that of the old wooden and stone tramways; and, even as applied to iron rails it had been extensively used before, as Mr. Brunel mentions in his report of August 1838 (see Appendix I. p. 535.)

Mr. Brunel designed for this continuous bearing a peculiar shape of rail, which, from the form of its section, acquired the name of the 'bridge rail.' The rail was bolted down to the longitudinal timbers, and the timbers of the two rails were connected together at intervals by cross-pieces, called transoms, bolted to them; these served to keep the two rails at a proper distance apart. The longitudinal timbers lay on gravel or other 'ballast,' which had been found to form the best foundation, as being firm and solid, easy of adjustment, and allowing free drainage.[52]

Mr. Brunel, however, thought there would be difficulty in giving the longitudinal baulks a sufficiently solid bearing on the gravel below them.

A similar difficulty had already been experienced with the heavy stone blocks used on other railways. As a remedy for this, Mr. Stephenson caused each block to be lifted and dropped several times on its place, so as to consolidate the ballast below.

The same thing could not be done with a long wooden baulk, and Mr.

Brunel therefore contrived another mode of overcoming the difficulty.

Piles were driven into the ground between the rails, and their heads bolted to the cross-transoms, the object being to hold the timber framework firmly down. The gravel was then rammed hard under the longitudinal baulks, to give the consolidation desired. The result, however, of this mode of construction was far from successful, and the state of the road, when run over by the trains, was in many places very defective.[53]

In the course of his enquiry Mr. Wood tried a large number of experiments on the Great Western and other lines. He was of opinion that stone blocks afforded a permanently firmer base, and so caused less resistance to the train, but that there was less noise with continuous timber bearings, and that they gave a smoother and a more perfect road for high rates of speed. He thought, however, that the piles were objectionable, and that the weight of the trains would in the course of time sufficiently consolidate the foundation. Mr. Brunel accepted Mr.

Wood's conclusions and abandoned the piling, adopting at the same time larger timbers and heavier rails.

The experience of the permanent way, as thus altered, fully justified the favourable antic.i.p.ations Mr. Brunel had formed of the continuous timber bearing.[54]

After the reports of Mr. Wood and Mr. Hawkshaw, with Mr. Brunel's replies to them, had been circulated among the shareholders, a special general meeting was called in London, to receive and consider these doc.u.ments. It was convened for December 20, 1838, but was adjourned till January 9, 1839. This meeting was of great importance, not only to the Company, but to Mr. Brunel personally, as on the resolutions to be pa.s.sed depended whether or not his plans should be proceeded with.

He had, however, the warm support of the Directors, as will appear from the following extracts from their report.

It may be here concisely stated, that Mr. Wood deduces from experiments upon the performance of engines on the Great Western and other lines, that although a higher rate of speed has been attained on the former, it would appear only to have been accomplished by the increased power of the engines, with a much greater consumption of c.o.ke when calculated per ton per mile. He ascribes this result princ.i.p.ally to the resistance presented by the atmosphere to the motion of railway trains, especially at high rates of speed. His remarks on that subject are qualified, however, by the expression of a doubt as to the value to be a.s.signed to the single set of experiments on each of two inclined planes, which are quoted as the authority for the degree of atmospheric resistance supposed to have been discovered.

The reduction of friction by the employment of wheels of increased diameter, and the benefit of lowering the carriages between the wheels, are affirmed by Mr. Wood as incontrovertible. The increased stability, and consequent increased steadiness of motion to carriages on the wider base, are also admitted by him....

The various propositions of doubtful advantage from the wide gauge, as well as of alleged objection to it, appear to have been thoroughly considered in the report in question. The experiments on the consumption of c.o.ke at high velocities were unfavourable, and, in connection with the theory of atmospheric resistance, appear to have influenced the mind of Mr. Wood to consider that a seven-feet gauge was beyond the width which he would deem the best. At the same time, upon a review of all the circ.u.mstances, and considering that there are counteracting advantages, incidental to an increased width of gauge, he does not think that the result of his enquiries would justify a change in the dimensions adopted on this line, and he recommends the present width should be retained.

The advice thus given by Mr. Wood, upon mature reflection, being directly at variance with the conclusion at which Mr. Hawkshaw had previously arrived upon an investigation similarly delegated to him, it became the duty of the Directors to consider most attentively the train of reasoning and argument which led the latter to urge such an opposite course. Naturally expecting from that circ.u.mstance to find in his report a clear and definite statement of the positive loss or disadvantages accruing from the increased width of gauge, the Directors could not fail to remark with some surprise that he enforces his recommendation, not upon any ascertained injury or failure in the plan, but almost exclusively upon the presumption that all railways, however disconnected or locally situated, should be constructed of one uniform width. While he appears to think that it might be an improvement to have an addition of a few inches, five or six at the most, he still questions the expediency of any variation from the 4 feet 8 inches gauge. Mr. Hawkshaw, in his report, also considers any additional expense upon the gauge, as well as upon the improvement of gradients, to be undesirable, and a.s.sumes it at a scale of augmentation far beyond the real difference of cost. His estimates on that head are impeached in the engineer's observations, and no doubt exists in the minds of the Directors, that the subject, reduced to a mere question of figures, in its present position, would undeniably show a pecuniary loss to be borne by the Company by any such change of system as he advocates, even if it were on other grounds deemed advisable. The objection that the wide gauge might prevent a junction with other lines seems both to Mr. Wood and the Directors to have but little weight, as applied to the Great Western Railway. Already has the same width been contemplated and provided for in the extension lines through Gloucestershire to Cheltenham and from Bristol to Exeter. Any local branches hereafter to be made would undoubtedly follow the same course, and the proprietors, therefore, may be satisfied that no apprehension need be entertained by them on that head.

The advantage of following Mr. Wood's advice, in not making any alteration in the width of way, has been since most forcibly shown by more recent experiments, which have entirely changed the results upon which the chief objections to the gauge were founded. The performance of the engines, shown by Mr. Wood's experiments in September, gave such a disproportionate result in their power upon the attainment of high velocities, as to render it all but impossible that the effect could be entirely produced by the action of the atmosphere on the trains. All doubts were shortly removed by its being ascertained that a different cause (a mere mechanical defect in the engine itself) had been in operation. If Mr. Wood had witnessed these recent performances of the engines, he must unquestionably have changed his opinions as to the means and practicability of carrying full average loads at a high speed, without the great increased expense of fuel. The Directors have satisfied themselves of this very important fact, by personally attending an experiment (accompanied by several gentlemen, among whom was a very eminent practical mechanic), on which occasion the 'North Star' took a train of carriages, calculated for 166 pa.s.sengers, and loaded to 43 tons, to and from Maidenhead, at a mean average speed of thirty-eight miles per hour, the maximum being forty-five miles per hour, consuming only 095, or less than 1 lb. of c.o.ke per net ton per mile, instead of 276, say 2 lbs., as previously shown. This was accomplished by a mere altered proportion in the blast pipe of the engine, in the manner explained by Mr. Brunel, being a simple adaptation of size in one of the parts, which admits a more free escape of steam from the cylinder, after it has exerted its force on the piston, still preserving sufficient draft in the fire.[55]

It must be almost needless to point out to those who have perused the reports, how importantly this change bears upon the subject in almost every relation of the enquiry. It negatives the a.s.sumption that the velocity can only be attained by a ruinous loss of power.

It establishes beyond doubt that the consumption of fuel as now ascertained, in proportion to the load, is only one-third of that which from the former experiments had been the basis of Mr. Wood's arguments. An a.n.a.lysis in the report of the performance of the Great Western engines, with heavy loads varying from 80 tons to 166 tons, shows in every respect a peculiarly satisfactory result at a small cost of fuel, and warrants the expectation of very great benefit to the Company from the economical transport of goods on the line. That the expenses of locomotive repairs, especially on that heavy cla.s.s of repair which arise from lateral strains on the wheels and framing of the engines, have been materially less than on other lines is ascertained by very detailed accounts, accurately made and submitted to the Board by the superintendent of that department. The experience of some months has now enabled the Directors to witness the progressive improvement in the practical working of the railway. A higher rate of speed has been generally maintained than on other lines, and at the same time, with that increased speed, great steadiness of motion has been found in the carriages, with consequent comfort to the pa.s.sengers. If speed, security, and comfort, were three great desiderata in the original inst.i.tution of railway travelling, the Directors feel sure that the public will appreciate and profit by any improvements in those qualities, the Company deriving ample remuneration in the shape of increased traffic. A saving of time upon a long journey, with increased comfort, will necessarily attract to one line in preference to another many travellers from beyond the ordinary distance of local connection, and will thus secure a valuable collateral trade which would not otherwise belong to it. It has also a decided tendency to avert compet.i.tion, which may with much reason be regarded as the chief peril to which railway property is subjected.

The Directors, upon a deliberate reconsideration of all the circ.u.mstances affecting the permanent welfare of the undertaking, divesting the question of all personal partialities or obstinate adherence to a system, unanimously acquiesce in the abandonment of the piles, in the subst.i.tution of a greater scantling of timber, and of a heavier rail, retaining the width of gauge with the continuous timber bearings, as the most conducive to the general interests of the Company.

The views of the Directors were approved of by the majority of the shareholders (the numbers being 7,792 for, and 6,145 against); and the construction of the line was proceeded with according to Mr. Brunel's plans.

By June 30, 1841, the whole length of the Great Western Railway was opened from London to Bristol. Some of the Directors' reports mention the fact that the speed uniformly maintained by the engines much exceeded the ordinary rate of railway travelling, and allude to the 'general testimony borne to the smoothness and comfort of the line and carriages.'

As has been before mentioned, extensions and branches on the same gauge, to all of which Mr. Brunel was engineer, were projected and ultimately carried out, in accordance with the original scheme of the undertaking, to Exeter, Plymouth, and Cornwall, and to Gloucester, Hereford, and South Wales, as well as to Oxford, Windsor, and other towns in the immediate neighbourhood of the line.

About 1844, the attention of the Company began to be directed to projects involving extensions of a much more serious character, and which were destined to have a powerful influence on the position of the gauge question. During the railway mania, the Great Western Company found it impossible to stand aloof from the contests which were going on around them, and thought it necessary, in order to protect their own interests, to extend their lines beyond the district to which they had originally intended to confine themselves.

At the general meeting in August, an extension from Oxford to Rugby was determined on, as 'of the greatest importance to the Great Western line.' About the same time a broad-gauge line was promoted from Oxford to Worcester, and thence by Kidderminster and Dudley to Wolverhampton, in order to open an immediate communication with the Staffordshire and Worcestershire districts. There were also rival projects on the narrow gauge, promoted by the London and Birmingham Company; and the competing plans were referred, as was the custom at that time, for the examination of the Railway Department of the Board of Trade.

In regard to the communication from north to south, through Oxford, the question was, where the break of gauge should be.[56] The Board of Trade saw nothing in the relative merits of the gauges to determine this question, and from commercial considerations, they recommended that the change of gauge should be made at Oxford. On this and other grounds they considered that the narrow gauge schemes to the north of Oxford were preferable to those of the Great Western Railway.

The rival schemes then went before Parliament, and after a protracted enquiry, obstinately fought between the parties, the decision was given in favour of the Great Western lines, contrary to the recommendation of the Board of Trade. It was, however, stated by the chairman of the Commons Committee that the decision had been founded on the local and general merits of the respective lines, without any reference to the comparative merits of the two gauges. On this account some peculiar provisions were made in the Acts; for though the lines were sanctioned on the broad gauge, the proprietors were bound also to lay down narrow gauge rails upon them, if required to do so by the Board of Trade. At the same time the House of Commons, on the motion of Mr. Cobden, pa.s.sed a Resolution praying her Majesty to refer the gauge question to a Royal Commission.

A Commission was issued in July; the Commissioners being three in number--Sir J. M. Frederic Smith, R.E.; Mr. G. B. Airy, Astronomer Royal; and Professor Barlow, of the Royal Military Academy, Woolwich.

They took a large amount of evidence, both oral and doc.u.mentary, and made some examinations of the working of the two gauges. Their report was presented to Parliament early in the session of 1846.

Of forty-eight witnesses, thirty-five were advocates of the narrow gauge; and against these were arrayed but four champions of the broad gauge, all officers of the Great Western Railway:--Mr. Charles Alexander Saunders, the secretary; Mr. Seymour Clarke, the traffic superintendent; Mr. (now Sir Daniel) Gooch, the locomotive superintendent; and Mr.

Brunel.

The report was of considerable length, and in it the Commissioners addressed themselves to three heads of enquiry, viz.:--

1. Whether the break of gauge was an inconvenience of so much importance as to demand the interference of the legislature.

2. What means could be adopted for obviating or mitigating such inconvenience.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Star Odyssey

Star Odyssey

Star Odyssey Chapter 3178: Heaven's Punishment Author(s) : Along With The Wind, 随散飘风 View : 2,019,015
All My Disciples Suck!

All My Disciples Suck!

All My Disciples Suck! Chapter 748 Author(s) : Rotating Hot Pot, 回转火锅 View : 480,166
Shoujo Grand Summoning

Shoujo Grand Summoning

Shoujo Grand Summoning Chapter 1709 Author(s) : 如倾如诉 View : 3,582,453
Doomsday Wonderland

Doomsday Wonderland

Doomsday Wonderland Chapter 1655: Quite Unaccustomed Author(s) : 须尾俱全, Beards And Tails View : 1,227,894
The Hitting Zone

The Hitting Zone

The Hitting Zone Chapter 1194: V4 ch42 Author(s) : Half_empty View : 770,489

The life of Isambard Kingdom Brunel, Civil Engineer Part 12 summary

You're reading The life of Isambard Kingdom Brunel, Civil Engineer. This manga has been translated by Updating. Author(s): Isambard Brunel. Already has 554 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com