The Glow-Worm and Other Beetles - novelonlinefull.com
You’re read light novel The Glow-Worm and Other Beetles Part 3 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
Thanks to this unexpected lack of spirit in the Mason-bee, I was able for hours to pursue my investigations at my leisure, seated on a stone in the midst of the murmuring and distracted swarm, without receiving a single sting, though I took no precautions whatever. Country-folk, happening to pa.s.s and beholding me seated, unperturbed, in the midst of the whirl of Bees, stopped aghast to ask me whether I had bewitched them, whether I charmed them, since I appeared to have nothing to fear from them:
"_Me, moun bel ami, li-z-ave doun escounjurado que vous pougnioun pas, caneu de sort!_"
My miscellaneous impedimenta spread over the ground, boxes, gla.s.s jars and tubes, tweezers and magnifying-gla.s.ses, were certainly regarded by these good people as the implements of my wizardry.
We will now proceed to examine the cells. Some are still open and contain only a more or less complete store of honey. Others are hermetically sealed with an earthen lid. The contents of these latter vary greatly. Sometimes we find the larva of a Bee which has finished its mess or is on the point of finishing it; sometimes a larva, white like the first, but more corpulent and of a different shape; at other times honey with an egg floating on the surface. The honey is liquid and sticky, with a brownish colour and a very strong, repulsive smell.
The egg is of a beautiful white, cylindrical in shape, slightly curved into an arc, a fifth or a sixth of an inch in length and not quite a twenty-fifth of an inch in thickness; it is the egg of the Anthophora.
In a few cells this egg is floating all alone on the surface of the honey; in others, very numerous these, we see, lying on the egg of the Anthophora, as on a sort of raft, a young Sitaris-grub with the shape and the dimensions which I have described above, that is to say, with the shape and the dimensions which the creature possesses on leaving the egg. This is the enemy within the gates.
When and how did it get in? In none of the cells where I have observed it was I able to distinguish a fissure which could have allowed it to enter; they are all sealed in a quite irreproachable manner. The parasite therefore established itself in the honey-warehouse before the warehouse was closed; on the other hand, the open cells, full of honey, but as yet without the egg of the Anthophora, are always free from parasites. It is therefore during the laying, or afterwards, when the Anthophora is occupied in plastering the door of the cell, that the young larva gains admittance. It is impossible to decide by experiment to which of these two periods we must ascribe the introduction of the Sitares into the cell; for, however peaceable the Anthophora may be, it is evident that we cannot hope to witness what happens in the cell at the moment when she is laying an egg or at the moment when she is making the lid. But a few attempts will soon convince us that the only second which would allow the Sitaris to establish itself in the home of the Bee is the very second when the egg is laid on the surface of the honey.
Let us take an Anthophora-cell full of honey and furnished with an egg and, after removing the lid, place it in a gla.s.s tube with a few Sitaris-grubs. The grubs do not appear at all eager for this wealth of nectar placed within their reach; they wander at random about the tube, run about the outside of the cell, sometimes happen upon the edge of the orifice and very rarely venture inside. When they do, they do not go far in and they come out again at once. If one happens to reach the honey, which only half fills the cell, it tries to escape as soon as it has perceived the shifting nature of the sticky soil upon which it was about to enter; but, tottering at every step, because of the viscous matter clinging to its feet, it often ends by falling back into the honey, where it dies of suffocation.
Again, we may experiment as follows: having prepared a cell as before, we place a larva most carefully on its inner wall, or else on the surface of the food itself. In the first case, the larva hastens to leave the cell; in the second case, it struggles awhile on the surface of the honey and ends by getting so completely caught that, after a thousand efforts to gain the sh.o.r.e, it is swallowed up in the viscous lake.
In short, all attempts to establish the Sitaris-grub in an Anthophora-cell provisioned with honey and furnished with an egg are no more successful than those which I made with cells whose store of food had already been broached by the larva of the Bee, as described above. It is therefore certain that the Sitaris-grub does not leave the fleece of the Mason-bee when the Bee is in her cell or at the entrance to it, in order itself to make a rush for the coveted honey; for this honey would inevitably cause its death, if it happened by accident to touch the perilous surface merely with the tip of its tarsi.
Since we cannot admit that the Sitaris-grub leaves the furry corselet of its hostess to slip unseen into the cell, whose orifice is not yet wholly walled up, at the moment when the Anthophora is building her door, all that remains to investigate is the second at which the egg is being laid. Remember in the first place that the young Sitaris which we find in a closed cell is always placed on the egg of the Bee.
We shall see in a minute that this egg not merely serves as a raft for the tiny creature floating on a very treacherous lake, but also const.i.tutes the first and indispensable part of its diet. To get at this egg, situated in the centre of the lake of honey, to reach, at all costs, this raft, which is also its first ration, the young larva evidently possesses some means of avoiding the fatal contact of the honey; and this means can be provided only by the actions of the Bee herself.
In the second place, observations repeated _ad nauseam_ have shown me that at no period do we find in each invaded cell more than a single Sitaris, in one or other of the forms which it successively a.s.sumes.
Yet there are several young larvae established in the silky tangle of the Bee's thorax, all eagerly watching for the propitious moment at which to enter the dwelling in which they are to continue their development. How then does it happen that these larvae, goaded by such an appet.i.te as one would expect after seven or eight months' complete abstinence, instead of all rushing together into the first cell within reach, on the contrary enter the various cells which the Bee is provisioning one at a time and in perfect order? Some action must take place here independent of the Sitares.
To satisfy those two indispensable conditions, the arrival of the larva upon the egg without crossing the honey and the introduction of a single larva among all those waiting in the fleece of the Bee, there can be only one explanation, which is to suppose that, at the moment when the Anthophora's egg is half out of the oviduct, one of the Sitares which have hastened from the thorax to the tip of the abdomen, one more highly favoured by its position, instantly settles upon the egg, a bridge too narrow for two, and with it reaches the surface of the honey. The impossibility of otherwise fulfilling the two conditions which I have stated gives to the explanation which I am offering a degree of certainty almost equivalent to that which would be furnished by direct observation, which is here, unfortunately, impracticable. This presupposes, it is true, in the microscopic little creature destined to live in a place where so many dangers threaten it from the first, an astonishingly rational inspiration, which adapts the means to the end with amazing logic. But is not this the invariable conclusion to which the study of instinct always leads us?
When dropping her egg upon the honey, therefore, the Anthophora at the same time deposits in her cell the mortal enemy of her race; she carefully plasters the lid which closes the entrance to the cell; and all is done. A second cell is built beside it, probably to suffer the same fatal doom; and so on until the more or less numerous parasites sheltered by her down are all accommodated. Let us leave the unhappy mother to continue her fruitless task and turn our attention to the young larva which has so adroitly secured itself board and lodging.
In opening cells whose lid is still moist, we end by discovering one in which the egg, recently laid, supports a young Sitaris. This egg is intact and in irreproachable condition. But now the work of devastation begins: the larva, a tiny black speck which we see running over the white surface of the egg, at last stops and balances itself firmly on its six legs; then, seizing the delicate skin of the egg with the sharp hooks of its mandibles, it tugs at it violently until it breaks, spilling its contents, which the larva eagerly drinks up.
Thus the first stroke of the mandibles which the parasite delivers in the usurped cell is aimed at the destruction of the Bee's egg. A highly logical precaution! The Sitaris-larva, as we shall see, has to feed upon the honey in the cell; the Anthophora-larva which would proceed from that egg would require the same food; but the portion is too small for two; so, quick, a bite at the egg and the difficulty will be removed. The story of these facts calls for no comment. This destruction of the c.u.mbersome egg is all the more inevitable inasmuch as special tastes compel the young Sitaris-grub to make its first meals of it. Indeed we see the tiny creature begin by greedily drinking the juices which the torn wrapper of the egg allows to escape; and for several days it may be observed, at one time motionless on this envelope, in which it rummages at intervals with its head, at others running over it from end to end to rip it open still wider and to cause a little of the juices, which become daily less abundant, to trickle from it; but we never catch it imbibing the honey which surrounds it on every side.
For that matter, it is easy to convince ourselves that the egg combines with the function of a life-buoy that of the first ration. I have laid on the surface of the honey in a cell a tiny strip of paper, of the same dimensions as the egg; and on this raft I have placed a Sitaris-larva. Despite every care, my attempts, many times repeated, always failed. The larva, placed in a paper boat in the centre of the ma.s.s of honey, behaves as in the earlier experiments. Not finding what suits it, it tries to escape and perishes in the sticky toils as soon as it leaves the strip of paper, which it soon does.
On the other hand, we can easily rear Sitaris-grubs by taking Anthophora-cells not invaded by the parasites, cells in which the egg is not yet hatched. All that we have to do is to pick up one of these grubs with the moistened tip of a needle and to lay it delicately on the egg. There is then no longer the least attempt to escape. After exploring the egg to find its way about, the larva rips it open and for several days does not stir from the spot. Henceforth its development takes place unhindered, provided that the cell be protected from too rapid evaporation, which would dry up the honey and render it unfit for the grub's food. The Anthophora's egg therefore is absolutely necessary to the Sitaris-larva, not merely as a boat, but also as its first nourishment. This is the whole secret, for lack of knowing which I had hitherto failed in my attempts to rear the larvae hatched in my gla.s.s jars.
At the end of a week, the egg, drained by the parasite, is nothing but a dry skin. The first meal is finished. The Sitaris-larva, whose dimensions have almost doubled, now splits open along the back; and through a slit which comprises the head and the three thoracic segments a white corpusculum, the second form of this singular organism, escapes to fall on the surface of the honey, while the abandoned slough remains clinging to the raft which has. .h.i.therto safeguarded and fed the larva. Presently both sloughs, those of the Sitaris and the egg, will disappear, submerged under the waves of honey which the new larva is about to raise. Here ends the history of the first form adopted by the Sitaris.
In summing up the above, we see that the strange little creature awaits, without food, for seven months, the appearance of the Anthophorae and at last fastens on to the hairs on the corselet of the males, who are the first to emerge and who inevitably pa.s.s within its reach in going through their corridors. From the fleece of the male the larva moves, three or four weeks later, to that of the female, at the moment of coupling; and then from the female to the egg leaving the oviduct. It is by this concatenation of complex manoeuvres that the larva in the end finds itself perched upon an egg in the middle of a closed cell filled with honey. These perilous gymnastics on the hair of a Bee in movement all the day, this pa.s.sing from one s.e.x to the other, this arrival in the middle of the cell by way of the egg, a dangerous bridge thrown across the sticky abyss, all this necessitates the balancing-appliances with which it is provided and which I have described above. Lastly, the destruction of the egg calls, in its turn, for a sharp pair of scissors; and such is the object of the keen, curved mandibles. Thus the primary form of the Sitares has as its function to get itself carried by the Anthophora into the cell and to rip up her egg. This done, the organism becomes transformed to such a degree that repeated observations are required to make us believe the evidence of our eyes.
CHAPTER IV THE PRIMARY LARVA OF THE OIL-BEETLES
I interrupt the history of the Sitares to speak of the Meloes, those uncouth Beetles, with their clumsy belly and their limp wing-cases yawning over their back like the tails of a fat man's coat that is far too tight for its wearer. The insect is ugly in colouring, which is black, with an occasional blue gleam, and uglier still in shape and gait; and its disgusting method of defence increases the repugnance with which it inspires us. If it judges itself to be in danger, the Meloe resorts to spontaneous bleeding. From its joints a yellowish, oily fluid oozes, which stains your fingers and makes them stink. This is the creature's blood. The English, because of its trick of discharging oily blood when on the defensive, call this insect the Oil-beetle. It would not be a particularly interesting Beetle save for its metamorphoses and the peregrinations of its larva, which are similar in every respect to those of the larva of the Sitares. In their first form, the Oil-beetles are parasites of the Anthophorae; their tiny grub, when it leaves the egg, has itself carried into the cell by the Bee whose victuals are to form its food.
Observed in the down of various Bees, the queer little creature for a long time baffled the sagacity of the naturalists, who, mistaking its true origin, made it a species of a special family of wingless insects. It was the Bee-louse (_Pediculus apis_) of Linnaeus;[1] the Triungulin of the Andrenae (_Triungulinus andrenetarum_) of Leon Dufour. They saw in it a parasite, a sort of Louse, living in the fleece of the honey-gatherers. It was reserved for the distinguished English naturalist Newport to show that this supposed Louse was the first state of the Oil-beetles. Some observations of my own will fill a few lacunae in the English scientist's monograph. I will therefore sketch the evolution of the Oil-beetles, using Newport's work where my own observations are defective. In this way the Sitares and the Meloes, alike in habits and transformations, will be compared; and the comparison will throw a certain light upon the strange metamorphoses of these insects.
[Footnote 1: Carolus Linnaeus (Karl von Linne, 1707-1778), the celebrated Swedish botanist and naturalist, founder of the Linnaean system of cla.s.sification.--_Translator's Note_.]
The same Mason-bee (_Anthophora pilipes_) upon whom the Sitares live also feeds a few scarce Meloes (_M. cicatricosus_) in its cells. A second Anthophora of my district (_A. parietina_) is more subject to this parasite's invasions. It was also in the nests of an Anthophora, but of a different species (_A. retusa_), that Newport observed the same Oil-beetle. These three lodgings adopted by _Meloe cicatricosus_ may be of some slight interest, as leading us to suspect that each species of Meloe is apparently the parasite of diverse Bees, a suspicion which will be confirmed when we examine the manner in which the larvae reach the cell full of honey. The Sitares, though less given to change of lodging, are likewise able to inhabit nests of different species. They are very common in the cells of _Anthophora pilipes_; but I have found them also, in very small numbers, it is true, in the cells of _A. personata_.
Despite the presence of _Meloe cicatricosus_ in the dwellings of the Mason-bee, which I so often ransacked in compiling the history of the Sitares, I never saw this insect, at any season of the year, wandering on the perpendicular soil, at the entrance of the corridors, for the purpose of laying its eggs there, as the Sitares do; and I should know nothing of the details of the egg-laying if G.o.dart,[2] de Geer[3] and, above all, Newport had not informed us that the Oil-beetles lay their eggs in the earth. According to the last-named author, the various Oil-beetles whom he had the opportunity of observing dig, among the roots of a clump of gra.s.s, in a dry soil exposed to the sun, a hole a couple of inches deep which they carefully fill up after laying their eggs there in a heap. This laying is repeated three or four times over, at intervals of a few days during the same season. For each batch of eggs the female digs a special hole, which she does not fail to fill up afterwards. This takes place in April and May.
[Footnote 2: Jean Baptiste G.o.dart (1775-1823), the princ.i.p.al editor of _L'Histoire naturelle des lepidopteres de France_.--_Translator's Note_.]
[Footnote 3: Baron Karl de Geer (1720-1778), the Swedish entomologist, author of _Memoires pour servir a l'histoire des insectes_ (1752-1778).--_Translator's Note_.]
The number of eggs laid in a single batch is really prodigious. In the first batch, which, it is true, is the most prolific of all, _Meloe proscarabaeus_, according to Newport's calculations, produces the astonishing number of 4,218 eggs, which is double the number of eggs laid by a Sitaris. And what must the number be, when we allow for the two or three batches that follow the first! The Sitares, entrusting their eggs to the very corridors through which the Anthophora is bound to pa.s.s, spare their larvae a host of dangers which the larvae of the Meloe have to run, for these, born far from the dwellings of the Bees, are obliged to make their own way to their hymenopterous foster-parents. The Oil-beetles, therefore, lacking the instinct of the Sitares, are endowed with incomparably greater fecundity. The richness of their ovaries atones for the insufficiency of instinct by proportioning the number of germs in accordance with the risks of destruction. What transcendent harmony is this, which thus holds the scales between the fecundity of the ovaries and the perfection of instinct!
The hatching of the eggs takes place at the end of May or in June, about a month after they are laid. The eggs of the Sitares also are hatched after the same lapse of time. But the Meloe-larvae, more greatly favoured, are able to set off immediately in search of the Bees that are to feed them; while those of the Sitares, hatched in September, have to wait motionless and in complete abstinence for the emergence of the Anthophorae the entrance to whose cells they guard. I will not describe the young Meloe-larva, which is sufficiently well known, in particular by the description and the diagram furnished by Newport. To enable the reader to understand what follows, I will confine myself to stating that this primary larva is a sort of little yellow louse, long and slender, found in the spring in the down of different Bees.
How has this tiny creature made its way from the underground lodging where the eggs are hatched to the fleece of a Bee? Newport suspects that the young Oil-beetles, on emerging from their natal burrow, climb upon the neighbouring plants, especially upon the Cichoriceae, and wait, concealed among the petals, until a few Bees chance to plunder the flower, when they promptly fasten on to their fur and allow themselves to be borne away by them. I have more than Newport's suspicions upon this curious point; my personal observations and experiments are absolutely convincing. I will relate them as the first phase of the history of the Bee-louse. They date back to the 23rd of May, 1858.
A vertical bank on the road from Carpentras to Bedoin is this time the scene of my observations. This bank, baked by the sun, is exploited by numerous swarms of Anthophorae, who, more industrious than their congeners, are in the habit of building, at the entrance to their corridors, with serpentine fillets of earth, a vestibule, a defensive bastion in the form of an arched cylinder. In a word, they are swarms of _A. parietina_. A spa.r.s.e carpet of turf extends from the edge of the road to the foot of the bank. The more comfortably to follow the work of the Bees, in the hope of wresting some secret from them, I had been lying for a few moments upon this turf, in the very heart of the inoffensive swarm, when my clothes were invaded by legions of little yellow lice, running with desperate eagerness through the hairy thickets of the nap of the cloth. In these tiny creatures, with which I was powdered here and there as with yellow dust, I soon recognized an old acquaintance, the young Oil-beetles, whom I now saw for the first time elsewhere than in the Bees' fur or the interior of their cells. I could not lose so excellent an opportunity of learning how these larvae manage to establish themselves upon the bodies of their foster-parents.
In the gra.s.s where, after lying down for a moment, I had caught these lice were a few plants in blossom, of which the most abundant were three composites: _Hedypnois polymorpha_, _Senecio gallicus_ and _Anthemis arvensis_. Now it was on a composite, a dandelion, that Newport seemed to remember seeing some young Oil-beetles; and my attention therefore was first of all directed to the plants which I have named. To my great satisfaction, nearly all the flowers of these three plants, especially those of the camomile (_Anthemis_) were occupied by young Oil-beetles in greater or lesser numbers. On one head of camomile I counted forty of these tiny insects, cowering motionless in the centre of the florets. On the other hand, I could not discover any on the flowers of the poppy or of a wild rocket (_Diplotaxis muralis_) which grew promiscuously among the plants aforesaid. It seems to me, therefore, that it is only on the composite flowers that the Meloe-larvae await the Bees' arrival.
In addition to this population encamped upon the heads of the composites and remaining motionless, as though it had achieved its object for the moment, I soon discovered yet another, far more numerous, whose anxious activity betrayed a fruitless search. On the ground, in the gra.s.s, numberless little larvae were running in a great flutter, recalling in some respects the tumultuous disorder of an overturned Ant-hill; others were hurriedly climbing to the tip of a blade of gra.s.s and descending with the same haste; others again were plunging into the downy fluff of the withered everlastings, remaining there a moment and quickly reappearing to continue their search.
Lastly, with a little attention, I was able to convince myself that within an area of a dozen square yards there was perhaps not a single blade of gra.s.s which was not explored by several of these larvae.
I was evidently witnessing the recent emergence of the young Oil-beetles from their maternal lairs. Part of them had already settled on the groundsel- and camomile-flowers to await the arrival of the Bees; but the majority were still wandering in search of this provisional refuge. It was by this wandering population that I had been invaded when I lay down at the foot of the bank. It was impossible that all these larvae, the tale of whose alarming thousands I would not venture to define, should form one family and recognize a common mother; despite what Newport has told us of the Oil-beetles'
astonishing fecundity, I could not believe this, so great was their mult.i.tude.
Though the green carpet was continued for a considerable distance along the side of the road, I could not detect a single Meloe-larva elsewhere than in the few square yards lying in front of the bank inhabited by the Mason-bee. These larvae therefore could not have come far; to find themselves near the Anthophorae they had had no long pilgrimage to make, for there was not a sign of the inevitable stragglers and laggards that follow in the wake of a travelling caravan. The burrows in which the eggs were hatched were therefore in that turf opposite the Bees' abode. Thus the Oil-beetles, far from laying their eggs at random, as their wandering life might lead one to suppose, and leaving their young to the task of approaching their future home, are able to recognize the spots haunted by the Anthophorae and lay their eggs in the near neighbourhood of those spots.
With such a mult.i.tude of parasites occupying the composite flowers in close proximity to the Anthophora's nests, it is impossible that the majority of the swarm should not become infested sooner or later. At the time of my observations, a comparatively tiny proportion of the starving legion was waiting on the flowers; the others were still wandering on the ground, where the Anthophorae very rarely alight; and yet I detected the presence of several Meloe-larvae in the thoracic down of nearly all the Anthophorae which I caught and examined.
I have also found them on the bodies of the Melecta- and Coelioxys-bees,[4] who are parasitic on the Anthophorae. Suspending their audacious patrolling before the galleries under construction, these spoilers of the victualled cells alight for an instant on a camomile-flower and lo, the thief is robbed! A tiny, imperceptible louse has slipped into the thick of the downy fur and, at the moment when the parasite, after destroying the Anthophora's egg, is laying her own upon the stolen honey, will creep upon this egg, destroy it in its turn and remain sole mistress of the provisions. The mess of honey ama.s.sed by the Anthophora will thus pa.s.s through the hands of three owners and remain finally the property of the weakest of the three.
[Footnote 4: Cf. _The Mason-bees_: chaps. viii. and ix.--_Translator's Note_.]
And who shall say whether the Meloe, in its turn, will not be dispossessed by a fresh thief; or even whether it will not, in the state of a drowsy, fat and flabby larva, fall a prey to some marauder who will munch its live entrails? As we meditate upon this deadly, implacable struggle which nature imposes, for their preservation, on these different creatures, which are by turns possessors and dispossessed, devourers and devoured, a painful impression mingles with the wonder aroused by the means employed by each parasite to attain its end; and, forgetting for a moment the tiny world in which these things happen, we are seized with terror at this concatenation of larceny, cunning and brigandage which forms part, alas, of the designs of _alma parens rerum_!
The young Meloe-larvae established in the down of the Anthophorae or in that of the Melecta- and the Coelioxys-bees, their parasites, had adopted an infallible means of sooner or later reaching the desired cell. Was it, so far as they were concerned, a choice dictated by the foresight of instinct, or just simply the result of a lucky chance?
The question was soon decided. Various Flies--Drone-flies and Bluebottles (_Eristalis tenax_ and _Calliphora vomitoria_)--would settle from time to time on the groundsel- or camomile-flowers occupied by the young Meloes and stop for a moment to suck the sweet secretions. On all these Flies, with very few exceptions, I found Meloe-larvae, motionless in the silky down of the thorax. I may also mention, as infested by these larvae, an Ammophila (_A. hirsuta_),[5]
who victuals her burrows with a caterpillar in early spring, while her kinswomen build their nests in autumn. This Wasp merely grazes, so to speak, the surface of a flower; I catch her; there are Meloes moving about her body. It is clear that neither the Drone-flies nor the Bluebottles, whose larvae live in putrefying matter, nor yet the Ammophilae who victual theirs with caterpillars, could ever have carried the larvae which invaded them into cells filled with honey.
These larvae therefore had gone astray; and instinct, as does not often happen, was here at fault.
[Footnote 5: For the Wasp known as the Hairy Ammophila, who feeds her young on the Grey Worm, the caterpillar of the Turnip Moth, cf. _The Hunting Wasps_, chaps. xviii. to xx.--_Translator's Note_.]
Let us now turn our attention to the young Meloes waiting expectant upon the camomile-flowers. There they are, ten, fifteen or more, lodged half-way down the florets of a single blossom or in their interstices; it therefore needs a certain degree of scrutiny to perceive them, their hiding-place being the more effectual in that the amber colour of their bodies merges in the yellow hue of the florets.
So long as nothing unusual happens upon the flower, so long as no sudden shock announces the arrival of a strange visitor, the Meloes remain absolutely motionless and give no sign of life. To see them dipping vertically, head downwards, into the florets, one might suppose that they were seeking some sweet liquid, their food; but in that case they ought to pa.s.s more frequently from one floret to another, which they do not, except when, after a false alarm, they regain their hiding-places and choose the spot which seems to them the most favourable. This immobility means that the florets of the camomile serve them only as a place of ambush, even as later the Anthophora's body will serve them solely as a vehicle to convey them to the Bee's cell. They take no nourishment, either on the flowers or on the Bees; and, as with the Sitares, their first meal will consist of the Anthophora's egg, which the hooks of their mandibles are intended to rip open.
Their immobility is, as we have said, complete; but nothing is easier than to arouse their suspended activity. Shake a camomile-blossom lightly with a bit of straw: instantly the Meloes leave their hiding-places, come up and scatter in all directions on the white petals of the circ.u.mference, running over them from one end to the other with all the speed which the smallness of their size permits. On reaching the extreme end of the petals, they fasten to it either with their caudal appendages, or perhaps with a sticky substance similar to that furnished by the a.n.a.l b.u.t.ton of the Sitares; and, with their bodies hanging outside and their six legs free, they bend about in every direction and stretch as far out as they can, as though striving to touch an object out of their reach. If nothing offers for them to seize upon, after a few vain attempts they regain the centre of the flower and soon resume their immobility.
But, if we place near them any object whatever, they do not fail to catch on to it with surprising agility. A blade of gra.s.s, a bit of straw, the handle of my tweezers which I hold out to them: they accept anything in their eagerness to quit the provisional shelter of the flower. It is true that, after finding themselves on these inanimate objects, they soon recognize that they have gone astray, as we see by their bustling movements to and fro and their tendency to go back to the flower if there still be time. Those which have thus giddily flung themselves upon a bit of straw and are allowed to return to their flower do not readily fall a second time into the same trap. There is therefore, in these animated specks, a memory, an experience of things.