Home

The Book of Cheese Part 2

The Book of Cheese - novelonlinefull.com

You’re read light novel The Book of Cheese Part 2 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

+39. Utensils.+--The utensils are an important source of bacterial contamination. The bacteria lodge in the seams and corners unless these are well-flushed with solder. From these seams they are not easily removed. When fresh warm milk is placed into such utensils, the bacteria begin to grow and multiply. All utensils with which milk comes in contact should first be rinsed with cold water and then thoroughly washed and finally scalded with boiling water, and drained or blown absolutely dry. They should then be placed in an atmosphere free from dust until wanted for use again. If an aerator is used, this should be operated in pure air, free from odors and dust. One of the greatest sources of bacterial contamination of cheese milk is the use of the milk-cans to return whey to the farms for pig feed. Frequently, sour whey is left in the cans until ready to feed. These cans are then not properly washed and scalded. The practice of pasteurizing the whey at the cheese factory is a great help in preventing this source of infection and the spreading of disease.

The use of a small-top milk pail[16] is to be especially recommended in preventing bacterial contamination. Because of the small opening, bacteria cannot easily fall into the milk in as large numbers as when the whole top of the pail is open. (See Fig. 3.)

If a milking machine[17] is used, great care must be exercised to see that all parts that come in contact with the milk are cleaned after each milking, and then put in a clean place until ready to use again.

+40. The factory.+--Another source of contamination is the cheese factory itself. The cheese-maker should keep his factory in the cleanest condition possible, not only because of the effect on the milk itself, but as a stimulus for the producers to follow his example. All doors and windows in the factory should be screened to keep out flies.

+41. The control of bacteria.+--If, in spite of preventive measures, bacteria get into the milk, their growth can be r.e.t.a.r.ded by controlling the temperature. If the temperature of the milk, as soon as drawn, can be reduced below that at which the bacteria grow and multiply rapidly, it will r.e.t.a.r.d their development. In general, all milk should be cooled to 50 F. or below. In cooling the milk, it should not be exposed to dust or odors. One of the best methods of cooling is to set the can containing the milk into a tub of cold running water, and then stir. If running water is not available, cold well-water[18] may be used, but the water should be changed several times. If the milk is not stirred during the cooling process, it will not cool so rapidly, because the layer of milk next the can will become cold and act as an insulator to the remainder in the center of the can.

One way to destroy many of the bacteria in milk is by pasteurization.

This consists in heating the milk to such a degree that the bacteria are killed, and then quickly cooling it. After pasteurization, the milk is so changed that some kinds of cheese cannot be made successfully.

+42. Fermentation test.+--When a cheese-maker is having trouble with gas in his cheese, or bad flavors, he can generally locate the source of difficulty. This can be done by making a small amount of cheese from each patron's milk, called a fermentation test.[19] Pint or quart fruit jars or milk bottles make suitable containers. They should be thoroughly washed and scalded, to be sure they are clean and sterile, and then covered to prevent contamination. As the milk is delivered to the factory, a sample is taken of each patron's milk. The best way to secure the sample is to dip the sterile jar in the can of milk as delivered and fill two-thirds full of milk.

The jars are then set in water at 110 F. to bring the temperature of the milk to 98 F. The jar should be kept covered. A sink or wash-tub makes a convenient place in which to keep the jars. When the temperature of the milk is 98 F., ten drops of rennet extract or pepsin is added to each jar. A uniform temperature of 98 F. should be maintained in the jars. This will necessitate the addition of warm water occasionally to the water surrounding the jars. When the milk is coagulated, the curd is broken up with a sterile knife. Precaution should be taken to sterilize the knife after using it in one jar before putting it into another. The best way to do this is to hold the knife for a minute in a pail of boiling water, after taking it out of each jar. The same precaution should be observed with the thermometer. Unless care is taken, contamination is liable to be carried from one jar to the other. After cutting, the whey is poured off. The temperature should be kept at 98 F. so that the organisms will have a suitable temperature for growth.

The whey should be poured from the jars occasionally, usually about every half hour.

As the fermentation takes place, different odors will be noticed in different jars. In ten to twelve hours the jar should be finally examined for odors and the curd taken out and cut to examine it for gas pockets. By this means, bad flavors and gas in the cheese can be traced to their sources.

[Ill.u.s.tration: FIG. 4.--A gang sediment tester, one tester removed.]

[Ill.u.s.tration: FIG. 5.--A single sediment tester.]

+43. The sediment test.+--The presence of solid material or dirt in the milk is always accompanied by bacterial contamination. By means of the sediment test, the amount of solid material can be determined. The test consists of filtering the milk through a layer of cotton; the foreign material is left on the cotton filter. Various devices for filtering the milk have been manufactured. (Figs. 4 and 5.) In order to be able to compare the filters from the different dairy-men's milk, the same amount of each patron's milk is filtered, usually about a pint. These tests are usually made once or twice a month at the factory and the filters placed on a card where the dairy-men can see them. Much improvement in the quality of the milk has been accomplished by the use of the sediment test. The purpose of this test may be and often is defeated by the use of efficient strainers. Milk produced in an unclean way may be rendered nearly free from sediment if carefully strained. It must be remembered that the strainer takes out only the undissolved substances and that bacteria and soluble materials which const.i.tute a very large part of the filth pa.s.s through with the milk.

CHAPTER III

_COAGULATING MATERIALS_

At the present time, two substances are used to coagulate milk for cheese-making,--rennet extract and commercial pepsin.[20] Many substances will coagulate milk, such as acids and other chemicals.

Enzymes in certain plants will also coagulate it.

The curing or ripening of the cheese seems to depend on the physical and chemical properties of the curd, on the activity of certain organisms and on enzymes produced by them or in the milk. Rennet extract and pepsin are the only known substances which will produce curd of such character as will permit the desired ripening changes to take place.

Until recently, rennet extract was princ.i.p.ally used to coagulate the milk, but because of the scarcity, pepsin is now being subst.i.tuted.

+44. Ferments.+--Many of the common changes taking place in milk are due to fermentations. The souring of milk is one of the most familiar cases of fermentation. The important change taking place is the formation of lactic acid from the milk-sugar. The change is brought about by certain living organisms, namely, the lactic acid-forming bacteria. Another familiar case of fermentation is the coagulation of milk by rennet extract or pepsin. In this case, the change is produced by a chemical substance, not a living organism. Fermentation may be defined as a chemical change of an organic compound through the action of living organisms or of chemical agents.

There are two general cla.s.ses of ferments: (1) living organisms, or organized ferments; (2) chemical, or unorganized ferments. Organized ferments are living microorganisms, capable, as a result of their growth, of causing the changes. Unorganized ferments are chemical substances or ferments without life, capable of causing marked changes in many complex organic compounds, while the enzymes themselves undergo little or no change. These unorganized ferments are such as rennin, pepsin, trypsin, ptyalin. The rennet and pepsin must, therefore, be very thoroughly mixed into the milk to insure complete and uniform results, because they act by contact, and theoretically, if they could be recovered, might be used over and over again. Practically, the amount used is so small a percentage that recovery would be impractical even if possible.

+45. Nature of rennet.+--Two enzymes or ferments are found in rennet extract, rennin and pepsin. They are prepared from the secreting areas of living membranes of the stomachs of mammalian young. For rennet-making, these stomachs are most valuable if taken before the young have received any other feed than milk. Rennin at this stage appears to predominate over pepsin which is already secreted to some extent. With the inclusion of other feed, the secretion of pepsin comes to predominate. Rennin has never been separated entirely from pepsin.

Both of these enzymes are secreted by digestive glands in the same area, perhaps even by the same glands. They are so closely related that many workers have regarded them as identical. In practical work the effectiveness of rennet preparations has been greatest when stomachs which have digested feed other than milk are excluded. The differences, therefore, however difficult to define, appear to be important in the commercial preparation of rennet.

It was the practice until a few years ago for each cheese-maker to prepare his own rennet extract. Each patron was supposed to supply so many rennets. Now commercial rennet extract and pepsin are on the market; however, some Swiss cheese-makers prefer to make their own rennet extract. For sheep's and goat's milk cheese, some makers hold that rennet made from kid or lamb stomachs is best for handling the milk of the respective species. The objection to the cheese-maker preparing his own rennet extract is that it varies in strength from batch to batch and is liable to spoil quickly. Taints and bad odors and flavors develop in it and so taint the cheese.

+46. Preparation of rennet extract.+--This extract may be manufactured commercially from digestive stomachs of calves, pigs or sheep. An animal is given a full meal just before slaughtering; this stimulates a large flow of the digestive juices, containing the desired enzymes.

The stomach is taken from the animal, cleaned, commonly inflated and dried. It may be held in the dry condition until needed for use. Such stomachs are usually spoken of as "rennets" in the trade. Such old rennets may be seen to-day hanging from the rafters of some of the older cheese factories. When wanted for use, rennets are placed in oak barrels and covered with water. Before placing them in the barrel, they are cut open so that the water may have easy access. Salt is usually added to the water at the rate of 3 to 5 per cent. They are stirred and pounded in this solution from five to seven days. At the end of this time, they are wrung through a clothes-wringer to remove the liquid. The rennets are put back into a fresh solution of salt and water, the object being to obtain all the digestive juices possible. They are usually soaked from four to six weeks. At the end of this time, most of the digestive juices will have been removed. The liquid portion is pa.s.sed through a filter made of straw, charcoal and sand. When clean, an excess of salt is added to preserve it.

Such extracts cannot be sterilized by heat because the necessary temperature would destroy the enzyme. Effective disinfectants cannot be used in food products. The extract, therefore, should be kept cool to r.e.t.a.r.d bacterial growth. The extract is kept in wooden barrels, stone jugs or yellow gla.s.s bottles to protect it from light, which is able to destroy its activity. Rennet extract should be clear, with a clean salty taste and a distinct rennet flavor. There should be no cloudy appearance and no muddy sediment in properly preserved rennet. Rennet extract is on the market in the form of a liquid and a powder, the former being much more common. The commercial forms of rennet have the advantage in the skill used in their preparation and standardization. The combined product from large numbers of stomachs may not be as effective a preparation as the most skillfully produced sample from the very choicest single stomach, but it gives a uniformity of result which improves the average product greatly.

+47. Pepsin.+--Pepsin is on the market in several commercial forms, as a liquid, scale pepsin and in a granular form known as spongy pepsin. Some commercial concerns put out a preparation which is a mixture of rennet extract and commercial pepsin.

+48. Chemistry of curdling.+--The chemistry of casein[21] and of curd formation under the influence of acid and rennet extract and pepsin has been the subject of many years' research. While many points remain unsettled, the general considerations together with a large ma.s.s of accepted facts may be presented and some of the unsolved problems pointed out as left for future researches.

Casein is a white amorphous powder, practically insoluble in water. It is an acid and as such readily dissolves in solutions of the hydroxides or the carbonates of alkalies and alkaline earths by forming soluble salts.

Pure casein salt solutions and fresh milk do not coagulate on boiling, but in the presence of free acid coagulation may take place below the boiling temperature. The coagulum formed in the case of milk includes fat and calcium phosphate. The slight pellicle which coats over milk when it is warmed is of the same composition.

+49. Use of acid.+--A commonly accepted explanation of the precipitation of casein by acids is that the casein is held in solution by chemical union with a base (lime in the case of milk); that added acid removes the base, allowing the insoluble casein to precipitate; and that excess of acid unites with casein, forming a compound which is more or less readily soluble.

+50. Robertson's theory.+--According to Robertson's conception, in a soluble solution of a protein or its salt, the molecules of the protein unite with each other to a certain extent, in this way forming polymers.

The reaction is reversible, and the point of equilibrium between the compound and its polymeric modification varies under the influence of whatever condition affects the concentration of the protein ions.

Addition of water, or of acid, alkali or salt, or the application of heat has such an effect, and consequently alters the relative number of heavier molecule-complexes. Robertson's experiments give evidence that one of the effects of increase of temperature on a solution of casein is a shifting of the equilibrium in the direction of the higher complexes.

He explains coagulation as being a result of these molecular aggregates becoming so large as to a.s.sume the properties of matter in ma.s.s and to become practically an unstable suspension and then a precipitate. The acid curd then is casein or some combination of casein with the precipitant acid.

+51. Rennet curd.+--Rennet extract and pepsin coagulation differs from coagulation by acids, and cannot be looked on as a simple removal of the base from a caseinate. The presence of soluble calcium salts (or other alkaline earth salts) seems to be essential, and the precipitate formed is not casein or a casein salt, but a salt of a slightly different nucleoalb.u.min called "paracasein." Many writers, following Halliburton, call this modification produced by rennin the "casein" and that from which it is derived, "caseinogen." Foster and a few others have used the term "tyrein" for the rennet clot.

A number of investigations have been made on the conditions essential or favorable to formation of the coagulum, especially with regard to the effects of the degree of acidity and of conditions affecting the amount of calcium present, either as free soluble salt or bound to the casein.

Soluble salts of calcium, barium and strontium favor or hasten coagulation, while salts of ammonium, sodium and pota.s.sium r.e.t.a.r.d or prevent coagulation.

The bulk of the coagulum from milk is a calcium paracaseinate, but it carries down with it calcium phosphate and fat, both of which bodies have been helped to remain in their state of suspension in milk by the presence of the casein salt. Lindet (1912) has concluded that about one-half of the phosphorus contained in the rennet curd is in the form of phosphate of lime (probably tricalcic), the other half being organically combined phosphoric acid.

+52. Hammarsten's theory.+--According to Hammarsten (1877, 1896), whose view has been commonly held, the distinctive effect of the ferment is not precipitation but the transformation of casein into paracasein. This is evidenced by the fact that if rennet be allowed to act on solutions free from lime salts no precipitate occurs; but there is an invisible alteration of the casein, for now, even if the ferment be destroyed by boiling the solution, addition of lime salts will cause immediate coagulation. (See also Spiro, 1906.) Hence the process of rennet coagulation is a two-phase process; the first phase is the transformation of casein by rennin, the second is the visible coagulation caused by lime salts.

Furthermore, if the purest casein and the purest rennin were used, Hammarsten always found after coagulation that the filtrate contained very small amounts of a protein. This protein he designated as the "whey protein."

In accordance with these observations, Hammarsten (1911) explains the rennin action "as a cleavage process, in which the chief ma.s.s of the casein, sometimes more than 90 per cent, is split off as paracasein, a body closely related to casein, and in the presence of sufficient amounts of lime salts the paracasein-lime precipitates out while the proteose-like substance (whey-protein) remains in solution."

By continued action of rennin on paracasein, a further transformation has been found in several cases (Petry, 1906; Van Herwerden, 1907; Van Dam, 1909), but perhaps due to a contamination of the rennin with pepsin, or to the ident.i.ty of these two enzymes. The action which forms paracasein and whey-protein takes place in a short time (Hammarsten, 1896; Schmidt-Nielson, 1906). The composition and solubilities of paracasein have received considerable attention. (See Loevenhart, 1904; Kikkoji, 1909; Van Slyke and Bosworth, 1912.) It is more readily digested by pepsin-hydrochloric acid than is casein (Hosl, 1910).

+53. Duclaux theory.+--Duclaux (1884) and Loevenhart (1904) and others do not accept Hammarsten's theory; but to most workers it seems probable, at least, that the action of the rennin is to cause a cleavage of casein with formation of paracasein. However, the chemical and physical differences observed between casein and paracasein appear to be so slight that Loevenhart and some others think that they are only physical, perhaps differences in the size of the colloid or solution aggregates. Loevenhart conceives of a large part of the work of the rennet (or of the acid, in acid and heat coagulation) as being a freeing of the calcium to make it available for precipitation. Some think that the aggregates of paracasein are larger than those of casein, but there is more evidence of their being smaller, which idea corresponds with the findings of Bosworth, though he looks on the change as a true cleavage.

+54. Bang's theory.+--Another description of the precipitation is given by Bang (1911), who studied the progress of the coagulation process by means of interruptions at definite intervals. His observations confirm the idea that rennin causes the formation of paracasein, and that the calcium salt serves only for the precipitation of the paracasein; the rennin has to do also with the mobilizing of lime salts. According to Bang, before coagulation occurs, paracaseins with constantly greater affinity for calcium phosphate are produced. These take up increasing amounts of calcium phosphate, until finally the combination formed can no longer remain in solution.

+55. Bosworth's theory.+--By a very recent work of L. L. Van Slyke and A. W. Bosworth (Van Slyke and Bosworth, 1912, 1913; and Bosworth and Van Slyke, 1913), in which ash-free casein and paracasein were compared as to their elementary composition, and as to the salts they form with bases, and the properties of these salts, it is indicated that the two compounds are alike in percentage composition and in combining equivalent, the paracasein molecule being one-half of the casein molecule. Moreover, Bosworth (1913) has shown that, if the rennin cleavage be carried out under conditions which avoid autohydrolysis, no other protein is formed; also that, if the calcium caseinate present be one containing four equivalents of calcium, the paracaseinate does not precipitate, save in the presence of a soluble calcium salt, while, if the calcium caseinate be one of two equivalents of base, rennin does cause immediate coagulation. Bosworth concludes that the rennin action is a cleavage (probably hydrolytic) of a molecule of caseinate into two molecules of paracaseinate, the coagulation being a secondary effect due to a change in solubilities, dicalcium paracaseinate being soluble in pure water but not in water containing more than a trace of calcium salt, and the monocalcium caseinate being insoluble in water. The alkali paracaseinates, as well as caseinates, are soluble. This explanation seems to promise to harmonize the observations with regard to acidity and the effects of the presence of soluble salts. This theory represents, therefore, many years of continuous work at the New York Experiment Station centered primarily on American Cheddar cheese.

Disputed points remain for further study but these workers have contributed much toward a clear description of the chemical const.i.tution of casein as affected by rennet action and bacterial activity.

The investigations of these authors and of Hart with regard to the changes which the paracasein, the calcium and the phosphorus undergo during the ripening of cheese (Van Slyke and Hart, 1902, 1905; Van Slyke and Bosworth, 1907, 1913; Bosworth, 1907) contributed to this interpretation.

BANG, IVAR, Ueber die chemische Vorgang bei der Milchgerinnung durch Lab, Skand. Arch. Physiol. 25, pages 105-144; through Jahresb. u. d. Fortsch. d. Thierchem.

41, pages 221-222, 1911.

BOSWORTH, A. W., The action of rennin on casein, N. Y.

Exp. Sta. Tech. Bul. 31, 1913.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Book of Cheese Part 2 summary

You're reading The Book of Cheese. This manga has been translated by Updating. Author(s): Walter Warner Fisk and Charles Thom. Already has 612 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com