Nitro-Explosives: A Practical Treatise - novelonlinefull.com
You’re read light novel Nitro-Explosives: A Practical Treatise Part 4 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
Upon leaving the filter house, where it has been washed and filtered, and has satisfactorily pa.s.sed the heat test, it is drawn off from the lowest tank in indiarubber buckets, and poured down the conduit leading to the precipitating house, where it is allowed to stand for a day, or sometimes longer, in order to allow the little water it still contains to rise to the surface. In order to accomplish this, it is sufficient to allow it to stand in covered-in tanks of a conical form, and about 3 or 4 feet high.
In many works it is previously filtered through common salt, which of course absorbs the last traces of water. It is then of a pale yellow colour, and should be quite clear, and can be drawn off by means of a tap (of vulcanite), fixed at the bottom of the tanks, into rubber buckets, and is ready for use in the preparation of dynamite, or any of the various forms of gelatine compounds, smokeless powders, &c., such as cordite, ballist.i.te, and many others.
Mikolajezak (_Chem. Zeit._, 1904, Rep. 174) states that he has prepared mono- and di-nitro-glycerine, and believes that the latter compound will form a valuable basis for explosives, as it is unfreezable. It is stated to be an odourless, unfreezable oil, less sensitive to percussion, friction, and increase of temperature, and to possess a greater solvent power for collodion-cotton than ordinary nitro-glycerine. It can thus be used for the preparation of explosives of high stability, which will maintain their plastic nature even in winter. The di-nitro-glycerine is a solvent for tri-nitro-glycerine, it can therefore be mixed with this substance, in the various gelatine explosives in order to lower the freezing point.
~The Waste Acids.~--The waste acids from the separating house, from which the nitro-glycerine has been as completely separated as possible, are run down the conduit to the secondary separator, in order to recover the last traces of nitro-glycerine that they contain. The composition of the waste acids is generally somewhat as follows:--Specific gravity, 1.7075 at 15 C.; sulphuric acid, 67.2 per cent.; nitric acid, 11.05 per cent.; and water, 21.7 per cent., with perhaps as much as 2 per cent. of nitric oxide, and of course varying quant.i.ties of nitro-glycerine, which must be separated, as it is impossible to run this liquid away (unless it can be run into the sea) or to recover the acids by distillation as long as it contains this substance. The mixture, therefore, is generally run into large circular lead-lined tanks, covered in, and very much like the nitrating apparatus in construction, that is, they contain worms coiled round inside, to allow of water being run through to keep the mixture cool, and a compressed air pipe, in order to agitate the mixture if necessary. The top also should contain a window, in order to allow of the interior being seen, and should have a leaden chimney to carry off the fumes which may arise from decomposition. It is also useful to have a gla.s.s tube of 3 or 4 inches in diameter subst.i.tuted for about a foot of the lead chimney, in order that the man on duty can at any time see the colour of the fumes arising from the liquid. There should also be two thermometers, one long one reaching to the bottom of the tank, and one to just a few inches below the surface of the liquid.
The nitro-glycerine, of course, collects upon the surface, and can be drawn off by a tap placed at a convenient height for the purpose. The cover of the tank is generally conical, and is joined to a gla.s.s cylinder, which is cemented to the top of this lead cover, and also to the lead chimney. In this gla.s.s cylinder is a hole into which fits a ground gla.s.s stopper, through which the nitro-glycerine can be drawn off. There will probably never be more than an inch of nitro-glycerine at the most, and seldom that. It should be taken to the filter house and treated along with another charge. The acids themselves may either be run to waste, or better treated by some denitration plant. This house probably requires more attention than any other in the danger area, on account of the danger of the decomposition of the small quant.i.ties of nitro-glycerine, which, as it is mixed with such a large quant.i.ty of acids and water, is very apt to become hot, and decomposition, which sets up in spots where a little globule of nitro-glycerine is floating, surrounded by acids that gradually get hot, gives off nitrous fumes, and perhaps explodes, and thus causes the sudden explosion of the whole. The only way to prevent this is for the workman in charge to look at the thermometers _frequently_, and at the colour of the escaping fumes, and if he should notice a rise of temperature or any appearance of red fumes, to turn on the water and air, and stir up the mixture, when probably the temperature will suddenly fall, and the fumes cease to come off.
The cause of explosions in this building is either the non-attention of the workmen in charge, or the bursting of one of the water pipes, by which means, of course, the water, finding its way into the acids, causes a sudden rise of temperature. If the latter of these two causes should occur, the water should at once be shut off and the air turned on full, but if it is seen that an explosion is likely to occur, the tank should at once be emptied by allowing its contents to run away into a drowning tank placed close outside the house, which should be about 4 feet deep, and some 16 feet long by 6 feet wide; in fact, large enough to hold a considerable quant.i.ty of water. But this last course should only be resorted to as a last extremity, as it is extremely troublesome to recover the small quant.i.ty of nitro-glycerine from the bottom of this tank, which is generally a bricked and cemented excavation some few yards from the house.
It has been proposed to treat these waste acids, containing nitro- glycerine, in Mr M. Prentice's nitric acid retort. In this case they would be run into the retort, together with nitrate of soda, in a fine stream, and the small quant.i.ty of nitro-glycerine, coming into contact with the hot mixture already in the retort, would probably be at once decomposed.
This process, although not yet tried, promises to be a success. Several processes have been used for the denitration of these acids.
~Treatment of the Waste Acid from the Manufacture of Nitro-Glycerine and Gun-Cotton.~--The composition of these acids is as follows:--
Nitro-glycerine and Gun-cotton Waste Acid.
Sulphuric acid 70 per cent. 78 per cent.
Nitric acid 10 " 12 "
Water 20 " 10 "
The waste acid from the manufacture of gun-cotton is generally used direct for the manufacture of nitric acid, as it contains a fairly large amount of sulphuric acid, and the small amount of nitro-cellulose which it also generally contains decomposes gradually and without explosion in the retort. Nitric acid may be first distilled off, the resulting sulphuric acid being then added to the equivalent amount of nitrate of soda. Nitric acid is then distilled over and condensed in the usual way. Very often, however, the waste acid is added direct to the charge of nitrate without previously eliminating the nitric acid. The treatment of the waste acid from the manufacture of nitro-glycerine is somewhat different. The small amount of nitro-glycerine in this acid must always be eliminated. This is effected either by allowing the waste acid to stand for at least twenty- four hours in a big vessel with a conical top, where all the nitro- glycerine which will have separated to the surface is removed by skimming; or, better still, the "watering down process" of Col. Nathan may be employed. In Nathan's nitrator every existing trace of nitro-glycerine is separated from the acids in a few hours after the nitration, and any further formation of nitro-glycerine is prevented by adding about 2 per cent. of water to the waste acids, which are kept agitated during the addition. The waste acid, now free from nitro-glycerine, but which may still contain organic matter, is denitrated by bringing it into contact with a jet of steam. The waste acid is pa.s.sed in a small stream down through a tower of acid-resisting stoneware (volvic stone), which is closely packed with earthenware, and at the bottom of which is the steam jet. Decomposition proceeds as the acid meets the steam, nitric and nitrous acids are disengaged and are pa.s.sed out at the top of the tower through a pipe to a series of condensers and towers, where the nitric acid is collected. The nitrous acid may be converted into nitric acid by introducing a hot compressed air jet into the gases before they pa.s.s into the condensers. Weak sulphuric acid of sp. gr. 1.6 collects in a saucer in which the tower stands, and is then pa.s.sed through a cooling worm. The weak sulphuric acid, now entirely free from nitric and nitrous acids, may be concentrated to sp. gr. 1.842 and 96 per cent. H_{2}SO_{4} by any of the well-known processes, e.g., Kessler, Webb, Benker, Delplace, &c., and it may be used again in the manufacture of nitro-glycerine or gun-cotton.
Two points in the manufacture of nitro-glycerine are of the greatest importance, viz., the purity of the glycerine used, and the strength and purity of the acids used in the nitration. With regard to the first of these, great care should be taken, and a complete a.n.a.lysis and thorough examination, including a preliminary experimental nitration, should always be inst.i.tuted. As regards the second, the sulphuric acid should not only be strong (96 per cent.), but as free from impurities as possible. With the nitric acid, which is generally made at the explosive works where it is used, care must be taken that it is as strong as possible (97 per cent.
and upwards). This can easily be obtained if the plant designed by Mr Oscar Guttmann[A] is used. Having worked Mr Guttmann's plant for some time, I can testify as to its value and efficiency.
[Footnote A: "The Manufacture of Nitric Acid," _Jour. Soc. Chem. Ind._, March 1893.]
Another form of nitric acid plant, which promises to be of considerable service to the manufacturer of nitric acid for the purpose of nitrating, is the invention of the late Mr Manning Prentice, of Stowmarket. Through the kindness of Mr Prentice, I visited his works to see the plant in operation. It consists of a still, divided into compartments or chambers in such a manner that the fluid may pa.s.s continuously from one to the other. The nitric acid being continuously separated by distillation, the contents of each division vary--the first containing the full proportion of nitric acid, and each succeeding one less of the nitric acid, until from the overflow of the last one the bisulphate of soda flows away without any nitric acid. The nitrate of soda is placed in weighed quant.i.ties in the hopper, whence it pa.s.ses to the feeder. The feeder is a miniature horizontal pug-mill, which receives the streams of sulphuric acid and of nitrate, and after thoroughly mixing them, delivers them into the still, where, under the influence of heat, they rapidly become a h.o.m.ogeneous liquid, from which nitric acid continuously distils.
Mr Prentice says: "I may point out that while the ordinary process of making nitric acid is one of fractional distillation by time, mine is fractional distillation by s.p.a.ce." "Instead of the operation being always at the same point of s.p.a.ce, but differing by the successive points of time, I arrange for the differences to take place at different points of s.p.a.ce, and these differences exist at one and the same points of time." It is possible with this plant to produce the full product of nitric acid of a gravity of 1.500, or to obtain the acid of varying strengths from the different still-heads. One of these stills, capable of producing about 4 tons of nitric acid per week, weighs less than 2 tons. It is claimed that there is by their use a saving of more than two-thirds in fuel, and four- fifths in condensing plant. Further particulars and ill.u.s.trations will be found in Mr Prentice's paper (_Journal of the Society of Chemical Industry_, 1894, p. 323).
CHAPTER III.
_NITRO-CELLULOSE, &c._
Cellulose Properties--Discovery of Gun-Cotton--Properties of Gun-Cotton-- Varieties of Soluble and Insoluble Gun-Cottons--Manufacture of Gun-Cotton-- Dipping and Steeping--Whirling out the Acid--Washing--Boiling--Pulping-- Compressing--The Waltham Abbey Process--Le Bouchet Process--Granulation of Gun-Cotton--Collodion-Cotton--Manufacture--Acid Mixture used--Cotton used, &c.--Nitrated Gun-Cotton--Tonite--Dangers in Manufacture of Gun-Cotton-- Trench's Fire-Extinguishing Compound--Uses of Collodion-Cotton--Celluloid-- Manufacture, &c.--Nitro-Starch, Nitro-Jute, and Nitro-Mannite.
~The Nitro-Celluloses.~--The substance known as cellulose forms the groundwork of vegetable tissues. The cellulose of the woody parts of plants was at one time supposed to be a distinct body, and was called lignine, but they are now regarded as identical. The formula of cellulose is (C_{6}H_{10}O_{6})_{X}, and it is generally a.s.sumed that the molecular formula must be represented by a multiple of the empirical formula, C_{12}H_{20}O_{10} being often regarded as the minimum. The a.s.sumption is based on the existence of a penta-nitrate and the insoluble and colloidal nature of cellulose. Green (_Zeit. Farb. Text. Ind._, 1904, 3, 97) considers these reasons insufficient, and prefers to employ the single formula C_{6}H_{10}O_{5}. Cellulose can be extracted in the pure state, from young and tender portions of plants by first crushing them, to rupture the cells, and then extracting with dilute hydrochloric acid, water, alcohol, and ether in succession, until none of these solvents remove anything more. Fine paper or cotton wool yield very nearly pure cellulose by similar treatment.
Cellulose is a colourless, transparent ma.s.s, absolutely insoluble in water, alcohol, or ether. It is, however, soluble in a solution of cuprammoniac solution, prepared from basic carbonate or hydrate of copper and aqueous ammonia. The specific gravity of cellulose is 1.25 to 1.45.
According to Schulze, its elementary composition is expressed by the percentage numbers:--
Carbon 44.0 per cent. 44.2 per cent.
Hydrogen 6.3 " 6.4 "
Oxygen 49.7 " 49.4 "
These numbers represent the composition of the ash free cellulose. Nearly all forms of cellulose, however, contain a small proportion of mineral matters, and the union of these with the organic portion of the fibre or tissue is of such a nature that the ash left on ignition preserves the form of the original. "It is only in the growing point of certain young shoots that the cellulose tissue is free from mineral const.i.tuents"
(Hofmeister).
Cellulose is a very inert body. Cold concentrated sulphuric acid causes it to swell up, and finally dissolves it, forming a viscous solution.
Hydrochloric acid has little or no action, but nitric acid has, and forms a series of bodies known as nitrates or nitro-celluloses. Cellulose has some of the properties of alcohols, among them the power of forming ethereal salts with acids. When cellulose in any form, such as cotton, is brought into contact with strong nitric acid at a low temperature, a nitrate or nitro product, containing nitryl, or the NO_{2} group, is produced. The more or less complete replacement of the hydroxylic hydrogen by NO_{2} groups depends partly on the concentration of the nitric acid used, partly on the duration of the action. If the most concentrated nitric and sulphuric acids are employed, and the action allowed to proceed for some considerable time, the highest nitrate, known as hexa-nitro- cellulose or gun-cotton, C_{12}H_{14}O_{4}(O.NO_{2})_{6}, will be formed; but with weaker acids, and a shorter exposure to their action, the tetra and penta and lower nitrates will be formed.[A]
[Footnote A: The paper by Prof. Lunge, _Jour. Amer. Chem. Soc._, 1901, 23[8], 527-579, contains valuable information on this subject.]
Besides the nitrate, A. Luck[A] has proposed to use other esters of cellulose, such as the acetate, benzoate, or butyrate. It is found that cellulose acetate forms with nitro-glycerine a gelatinous body without requiring the addition of a solvent. A sporting powder is proposed composed of 75 parts of cellulose nitrate (13 per cent. N.) mixed with 13 parts of cellulose acetate.
[Footnote A: Eng. Pat. 24,662, 22nd November 1898.]
The discovery of gun-cotton is generally attributed to Schonbein (1846), but Braconnot (in 1832) had previously nitrated starch, and six years later Pelouse prepared nitro-cotton and various other nitro bodies, and Dumas nitrated paper, but Schonbein was apparently the first chemist to use a mixture of strong nitric and sulphuric acids. Many chemists, such as Piobert in France, Morin in Russia, and Abel in England, studied the subject; but it was in Austria, under the auspices of Baron Von Lenk, that the greatest progress was made. Lenk used cotton in the form of yarn, made up into hanks, which he first washed in a solution of potash, and then with water, and after drying dipped them in the acids. The acid mixture used consisted of 3 parts by weight of sulphuric to 1 part of nitric acid, and were prepared some time before use. The cotton was dipped one skein at a time, stirred for a few minutes, pressed out, steeped, and excess of acid removed by washing with water, then with dilute potash, and finally with water. Von Lenk's process was used in England at Faversham (Messrs Hall's Works), but was given up on account of an explosion (1847).
Sir Frederick Abel, working at Stowmarket and Waltham Abbey, introduced several very important improvements into the process, the chief among these being pulping. Having traced the cause of its instability to the presence of substances caused by the action of the nitric acid on the resinous or fatty substances contained in the cotton fibre, he succeeded in eliminating them, by boiling the nitro-cotton in water, and by a thorough washing, after pulping the cotton in poachers.
Although gun-cottons are generally spoken of as nitro-celluloses, they are more correctly described as cellulose nitrates, for unlike nitro bodies of other series, they do not yield, or have not yet done so, amido bodies, on reduction with nascent hydrogen.[A] The equation of the formation of gun-cotton is as follows:--
2(C_{6}H_{10}O_{5}) + 6HNO_{3} = C_{12}H_{14}O_{4}(NO_{3})_{6} + 6OH_{2}.
Cellulose. Nitric Acid. Gun-Cotton. Water.
The sulphuric acid used does not take part in the reaction, but its presence is absolutely essential to combine with the water set free, and thus to prevent the weakening of the nitric acid. The acid mixture used at Waltham Abbey consists of 3 parts by weight of sulphuric acid of 1.84 specific gravity, and 1 part of nitric acid of 1.52 specific gravity. The same mixture is also used at Stowmarket (the New Explosive Company's Works). The use of weaker acids results in the formation of collodion- cotton and the lower nitrates generally.
[Footnote A: "Cellulose," by Cross and Bevan, ed. by W.R. Hodgkinson, p.
9.]
The nitrate which goes under the name of gun-cotton is generally supposed to be the hexa-nitrate, and to contain 14.14 per cent. of nitrogen; but a higher percentage than 13.7 has not been obtained from any sample. It is almost impossible (at any rate upon the manufacturing scale) to make pure hexa-nitro-cellulose or gun-cotton; it is certain to contain several per cents. of the soluble forms, i.e., lower nitrates. It often contains as much as 15 or 16 per cent., and only from 13.07[A] to 13.6 per cent. of nitrogen.
[Footnote A: Mr J.J. Sayers, in evidence before the court in the "Cordite Case," says he found 15.2 and 16.1 per cent. soluble cotton, and 13.07 and 13.08 per cent. nitrogen in two samples of Waltham Abbey gun-cotton.]
A whole series of nitrates of cellulose are supposed to exist, the highest member being the hexa-nitrate, and the lowest the mono-nitrate. Gun-cotton was at one time regarded as the tri-nitrate, and collodion-cotton as the di-nitrate and mono-nitrate, their respective formula being given as follows:--
Mono-nitro-cellulose C_{6}H_{9}(NO_{2})O_{5} = 6.763 per cent. nitrogen.
Di-nitro-cellulose C_{6}H_{8}(NO_{2})_{2}O_{5} = 11.11 " "
Tri-nitro-cellulose C_{6}H_{7}(NO_{2})_{3}O_{5} = 14.14 " "
But gun-cotton is now regarded as the hexa-nitrate, and collodion-cotton as a mixture of all the other nitrates. In fact, chemists are now more inclined to divide nitro-cellulose into the soluble and insoluble forms, the reason being that it is quite easy to make a nitro-cellulose entirely soluble in a mixture of ether-alcohol, and yet containing as high a percentage of nitrogen as 12.6; whereas the di-nitrate[A] should theoretically only contain 11.11 per cent. On the other hand, it is not possible to make gun-cotton with a higher percentage of nitrogen than about 13.7, even when it does not contain any nitro-cotton that is soluble in ether-alcohol.[B] The fact is that it is not at present possible to make a nitro-cellulose which shall be either entirely soluble or entirely insoluble, or which will contain the theoretical content of nitrogen to suit any of the above formulae for the cellulose nitrates. Prof. G. Lunge gives the following list of nitration products of cellulose:--
[Footnote A: The penta-nitrate C_{12}H_{15}O_{5}(NO_{3})_{5} = 12.75 per cent. nitrogen.]
[Footnote B: In the Cordite Trial (1894) Sir F.A. Abel said, "Before 1888 there was a broad distinction between soluble and insoluble nitro- cellulose, collodion-cotton being soluble (in ether-alcohol) and gun-cotton insoluble." Sir H.E. Roscoe, "That he had been unable to make a nitro-cotton with a higher nitrogen content than 13.7." And Professor G.
Lunge said, "Gun-cotton always contained soluble cotton, and _vice versa_." These opinions were also generally confirmed by Sir E. Frankland, Sir W. Crookes, Dr Armstrong, and others.]
Dodeca-nitro-cellulose C_{24}H_{28}O_{20}(NO_{2})_{12} = 14.16 per cent.
nitrogen. (= old tri-nitro-cellulose) Endeca-nitro-cellulose C_{24}H_{29}O_{20}(NO_{2})_{11} = 13.50 per cent.
nitrogen.
Deca-nitro-cellulose C_{24}H_{30}O_{20}(NO_{2})_{10} = 12.78 per cent.