Home

Learning To Fly Part 4

Learning To Fly - novelonlinefull.com

You’re read light novel Learning To Fly Part 4 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Another says he is sure he saw one of the wings fold upwards and the machine swing and fall. And so on. It is extremely difficult, even for a technical eye-witness, to be sure of what he sees when things happen quickly and at a distance from him; while the statements of non-technical people, who are not trained in observation, are generally so unreliable as to be useless.

It has happened often therefore, far too often, in aeroplane fatalities that have happened from time to time, that the cause of such accidents has, even after the most careful investigation, had to be written down a mystery. But in more than a few cases, though the evidence has been far from conclusive, it has been considered that a pilot has been guilty of some error of judgment. There were puzzling instances, notably in the early days of flying, when airmen began first to make cross-country flights, of engines being heard to fail suddenly, and machines seen to fall to destruction. That engines should break down was not surprising; they were doing so constantly; but there was no reason why, even if they did fail, a machine should fall helplessly instead of gliding. But what was thought to have happened, in more than one of these cases, was that the pilot, through an error of judgment, had failed to get down the bow of his machine when his motor gave signs of stopping. The craft concerned were, it should be mentioned, "pusher" biplanes; and the same rule applied to them, in cases of engine failure, as has been explained in a previous chapter, and as is emphasised nowadays in the instruction of the novice. But in those days the beginner had frequently to learn, not from wise tuition, but from bitter experience; and he was lucky, often, if he learned his lesson and still retained his life. On certain early-type biplanes, for instance, machines with large tail-planes, and engined as a rule by a motor which was giving less than its proper amount of power, it was most dangerous for a pilot if, on observing any signs of failing in his engine, he sought to fly on in the hope that the motor would "pick up" again, and continue its work. Directly there was a tendency of the motor to miss-fire, or lessen in the number of its revolutions per minute, the consequent reduction of the propeller draught, as it acted on the tail of the machine, would cause this tail to droop, and the machine to a.s.sume very quickly a dangerous position. And when once it began to get tail-down, as pilots found to their cost, there was nothing to be done. The machine lost what little forward speed it had, and either fell tail-first, or slipped down sideways. Such risks as these, which were very real, were rendered worse owing to the fact that, in much of the cross country flying of the early days, pilots flew too low. They lacked the confidence of those who followed them, and were too p.r.o.ne to hug the earth, instead of attaining alt.i.tude. It was not realised clearly then, as it is now, that in height lies safety. And so when a machine lost headway through engine failure, and was not put quickly enough into a glide, it happened often that it had come in contact with the earth, and had been wrecked, before there was any chance for the pilot to regain control, or for the machine itself to exhaust its side-slip, and come back to anything like a normal position.

But the failure of the human factor in flying, the lack of skill of a pilot that may lead to disaster, is shown by statistics to play no more than a small part, when accidents are studied in numbers and in detail. Some time before the war, in an a.n.a.lysis of the accidents that had befallen aviators in France--accidents concerning which there was adequate data--it was shown that only 15 per cent. of them could be attributed to a failure in judgment or skill on the part of the pilot.

Apart from errors, however, in what may be called legitimate piloting, there have been regrettable accidents due to trick or fancy flying.

Putting a machine through a series of evolutions, to interest and amuse spectators, is not of course in itself to be condemned. In such flying, and notably for instance in "looping the loop," facts were learnt concerning the navigation of the air, and as to the apparently hopeless positions from which an aeroplane would extricate itself, which were of very high value, from both a scientific and practical standpoint. Public interest in aviation was increased also by such displays; and it is very necessary that there should be public interest in flying, seeing that it is the public which is asked to pay for the development of our air-fleets. But the man who undertakes exhibition flying needs not only to be a highly-skilled pilot, but a man also of an exceptional temperament--a man whose familiarity with the air never leads him into a contempt for its hidden dangers; a man who will not, even though he is called on to repeat a feat time after time, abate in any way the precautions which may be necessary for his safety. In looping the loop, for instance, or in upside-down flying, it is necessary always that the aeroplane should be at a certain minimum height above the ground. Then, should anything unexpected happen, and the pilot lose command temporarily over his machine, he knows he has a certain distance which he may fall, before striking the ground; and during this fall the natural stability of his machine, aided by his own operation of the guiding surfaces, may bring it back again within control. But if he has been tempted to fly too near the ground, and has ignored for the moment this vital precaution, and if something happens for which he is not prepared, then the impact may come before he can do anything to save himself.



In the early days of flying, when aviators attempted an acrobatic feat, they ran a far heavier risk than would be the case to-day; and for the simple reason that their machines, not having a strength sufficient to withstand any abnormal stresses, were likely to collapse in the air if they were made to dive too rapidly, or placed suddenly at any angle which threw a heavy strain on their planes. A machine for exhibition flying needs to be constructed specially; but this was not realised till accidents had taught their lesson.

It is a regrettable fact, one which emerges directly from a study of aeroplane accidents, that many of them might have been avoided had men been content to follow warily in the footsteps of the pioneers, and not run heavy risks till they themselves, and the machines they controlled, had been prepared, by a long period of steady flying, to meet such greater dangers. The first men who flew realised fully the risks they ran. But when flying became more general, and men found machines ready to their hands, machines which it was a simple matter to learn to fly, this early spirit of caution was forsaken, and feats were attempted which brought fatalities in their train, and which seemed to emphasise the risks of aviation, and did it the very bad service that they fixed in the public mind a notion of its dangers, and prevented men from coming forward to take up flying as a sport.

CHAPTER VIII

FACTORS THAT MAKE FOR SAFETY

It has been calculated that nearly half the aeroplane disasters of the early days were due to a structural weakness in machines, or to mistakes either in their design, or in such details as the position, shape, and size of their surfaces. To-day, thanks to science, and to the growing skill and experience of aeroplane designers and constructors, this risk of the collapse of a machine in the air, or of its failure to respond to its controls at some critical moment through an error in design, has been to a large extent eliminated. That such risks should be eliminated wholly is, as yet, too much to expect.

One of the factors making for safety has been the steady growth in the general efficiency of aircraft: in the curve of their wings which, as a result largely of scientific research, has been made to yield a greater lift for a given surface and to offer a minimum of resistance to their pa.s.sage through the air; in the power and reliability of their engines; in the efficiency of their propellers; and in the shaping of the fusilage of a machine, and in the placing and "stream-lining" of such parts as meet the air, so as to reduce the head resistance which is encountered at high speeds. Such gains in efficiency, which give constructors more lat.i.tude in the placing of weight and strength where experience show they are needed, have gone far to produce an airworthy machine. In the old days, when machines were inefficient, a few revolutions more or less per minute in the running of an engine meant all the difference between an ascent and merely pa.s.sing along the ground. But nowadays, through the all-round increase in efficiency that has been obtained, a machine will still fly upon its course without losing alt.i.tude, and respond to its controls, even should the number of revolutions per minute of its engine be reduced considerably.

When given a greater efficiency in lifting surfaces and power-plants--and profiting also from the lessons that had been learnt in the piloting of machines--constructors were able to devote their attention, and to do so with certainty instead of in a haphazard way, to the provision of factors of safety when a craft was in flight. With a machine of any given type, if driven through the air at a certain speed, it is possible to estimate with accuracy what the normal strains will be to which it is subjected. But even if such data are obtained, and the machine given the strength indicated, this factor of safety is insufficient. It is not so much the normal strains, as those which are abnormal, that must be guarded against in flight. A high-speed machine, if piloted on a day when the air is turbulent, may be subjected to extraordinarily heavy strains; rising many feet in the air one moment, falling again the next, and being met suddenly by vicious gusts of wind--in much the same way that a fast-moving ship, when fighting its way through a rough sea, is beaten and buffeted by the waves. Air waves have not of course the weight, when they deliver a blow, that lies behind a ma.s.s of water; but that these wind-waves attain sometimes an abnormal speed, and have a tremendous power of destruction, is shown in the havoc that is caused by hurricanes.

It seems astonishing to many people that such a frail machine as the aeroplane, with its outspread wings containing nothing stronger often than wooden spars and ribs, covered by a cotton fabric, should be capable of being driven through the air at such a speed, say, as 100 miles an hour, encountering not only the pressure of the air, but resisting also the fluctuations to which it may be subjected. But, underlying the lightness and apparent frailty of such a wing, when one sees it in the workshop in its skeleton form, before it has been clothed in fabric, there is a skill in construction, and an experience in the choice, selection, and working of woods, that produces a structure which, for all its fragile appearance, is amazingly strong.

And the same applies, nowadays, to all the other parts of an aeroplane. That it should have taken years to gain such strength, and to reduce so largely the risk of breakage, is not in itself surprising. Men had to devise new methods in construction--always with the knowledge that weight must be saved--and to create new factors of safety, before they could build an airworthy craft.

To-day, when a man flies, he need have no lurking fear, as had the pioneers, that his craft may break in the air. Even when it is driven through a gale, plunging in the rushes of the wind, yet held straining to its task by the power of its motor, the modern aeroplane can be relied upon; and not in one detail of its construction, but in every part. Experience, the researches of science, and the growing skill with which aircraft are built, stand between the airman and many of his previous dangers. The aeroplane to-day, one of the structural triumphs of the world in its lightness and its strength, has a factor of safety which is sufficient to meet, and to withstand, not merely ordinary strains, but any such abnormal stresses as it may encounter--and which may be many times greater than the strains of normal flight.

The aviator knows also that his engine, as it gives him power to combat successfully his treacherous enemy, the wind, represents the fruit of many tests and of many failures, and of the spending of hundreds of thousands of pounds. Many of its defects have revealed themselves, and been rectified; it is no longer light where it should have weight of metal, nor weak where it should be strong. So far as any piece of mechanism can be made reliable, consisting as it does of a large number of delicate parts, operating at high speed, the aeroplane motor has been made reliable. But, so long as one motor is used, there must always, as we have said, remain a risk of breakdown.

It is for this reason that, thanks largely to the stimulus of the war--which has created a practical demand for such machines--aeroplanes are now being built, and flown with success, which are fitted with duplicate motors. With such machines, which give us a first insight as to the aircraft of the future, engine failure begins to lose its perils--particularly in regard to war. More than once during the great campaign, when flying a single-engine machine, an aviator has found his motor fail him, and has been obliged to land on hostile soil; with the result that he has been made prisoner. But with dual-engine machines it has been found that, when one motor has failed mechanically, or has been put out of action by shrapnel, the remaining unit has been sufficient--though the machine has flown naturally at a reduced rate--to enable the pilot to regain his own lines.

In peace flying, too, as well as in war, the multiple-engined aeroplane brings a new factor of safety. If one of his motors fails, and he is over country which offers no suitable landing-place, the pilot with a duplicate power-plant need not be concerned. His remaining unit or units will carry him on. There are problems with duplicate engines which remain to be solved--problems of a technical nature--which involve general efficiency, transmission gear, and the number and the placing of propellers; but already, though this new stride in aviation is in its earliest infancy, results that are most promising have been obtained.

To those who study aviation, and have done so constantly, say from the year 1909, one of the most striking signs of progress lies in the fact that, though unable at first to fly even in the lightest winds, the aviator of to-day will fight successfully against a 60 miles-an-hour wind, and will do battle if need be, once he is well aloft, with a gale which has a velocity of 90 miles an hour. He will ascend indeed, and fly, in any wind that permits him to take his machine from the ground into the air, or which the motor of his craft will allow it to make headway against. And here, though machines are still experimental, there is removed at one stroke the earliest and the most positive objection of those who criticised a man's power to fly. When the first aeroplanes flew the sceptics said: "You have still to conquer the wind, and that you will never do. Aeroplanes will be built to fly only in favourable weather, and this will limit their use so greatly that they will have no significance." But to-day the aviator has ceased, one might almost say, to be checked or hampered by the wind. If the need is urgent, as it often is in war, then it will be nothing less than a gale that will keep a pilot to the ground, provided he has a sufficiently powerful machine, and a suitable ground from which to rise--and granted also that he has no long distance to fly.

Wind-flying resolves itself into a question of having ample engine-power, of being able to launch a machine without accident, and get it to earth again without mishap; and of being able to make a reasonable headway against the wind when once aloft; and these difficulties should solve themselves, as larger and heavier machines are built.

Apart from the growing skill of the aviator, which has been bought dearly, science can now give him a machine, when he is in a wind, that needs no exhausting effort to hold it in flight. Craft are built, as a matter of certainty and routine, which have an automatic stability.

Science has made it possible indeed, by a mere shaping and placing of surfaces, and without the aid of mechanical devices, to give an aeroplane such a natural and inherent stability that, when it is a.s.sailed by wind gusts in flight, it will exercise itself an adequate correcting influence. To understand what this means it should be realised that, when such a machine is in flight say in war on a strategical reconnaissance, and carries pilot and pa.s.senger, the former can take it to a suitable alt.i.tude and then set and lock his controls, and afterwards devote his time, in common with that of his pa.s.senger, to the making of observations or the writing of notes. The machine meanwhile flies itself, adapting itself automatically to all the differences of wind pressure which, if it had not this natural stability, would need a constant action of the pilot to overcome. All he need do is to maintain it on its course by an occasional movement of the rudder. With such a machine, even on a day when there is a rough and gusty wind, it is possible for an airman to fly for hours without fatigue; whereas with a machine which is not automatically stable, and needs a ceaseless operation of its controls, the physical exhaustion of a pilot, after hours of flight, is very severe.

So, already, one sees these factors of safety emerge and take their place. There is no longer a grave peril of machines breaking in the air; there need be no longer, with duplicate power-plants, the constant risk of engine failing; while that implacable and treacherous foe, the wind, is being robbed daily of its perils.

CHAPTER IX

A STUDY OF THE METHODS OF GREAT PILOTS

The masters of flying, and this is a fact the novice should ponder well, have been conspicuous almost invariably for their prudence. No matter how great has been their personal skill, they have never lost their respect for the air; and this is why so many of the great flyers, after running the heaviest of risks in their pioneer work, have managed to escape with their lives. What patience and sound judgment can accomplish, when pitted even against such dangers as must be faced by an experimenter when he seeks to fly, is shown by an incident from the early career of the Wright brothers. With one of their gliders, a necessarily frail machine, and in tests made when they were both complete novices, they managed to make nearly 1000 glides; and not once in all those flights, during which they were learning the rudiments of balance and control, did they have a mishap which damaged at all seriously their machine.

These two brothers, Wilbur and Orville, offer to the student of flying, apart from the historical interest which is attached to their work, a temperamental study of the greatest interest. Wilbur, who was grave, judicial--a man of infinite patience and with an exceptional power of lucid thinking--found in his brother and co-worker, Orville, a disposition just such as was necessary to strengthen and support him in his great research; a disposition more vivacious and more enthusiastic than his, and one which acted as a balance to his own gravity. The method of these brothers in first attacking a ma.s.s of data, most of it contradictory--and a large amount of it of little intrinsic value--and then framing their own research on lines which they discussed and studied with methodical care, forms a model of sound judgment for workers in any complex field. Their kite experiments, their gliders, their refusal to hasten their steps unduly in the fitting of an engine to their machine, reveal again their discretion, and that judgment which never failed them. Perseveringly and unswervingly, exhibiting doggedness without obstinacy, and with their work illuminated always by the highest intelligence, they moved surely from stage to stage; and at last, when they fitted a motor to their machine, such was their knowledge of the air, and of the control of their craft when in flight, that they were able to make this crucial step, from a glider to a machine driven by power, without any breakage of their apparatus or injury to themselves.

The same self-control marked them when, having demonstrated that men can ascend in a power-driven machine, and steer such a craft at will, they dismantled their apparatus and commenced their negotiations with foreign Governments. Wilbur Wright, too, when he came to France to give his first public demonstrations, provided by his methods a model for aviators, either present or future. He resisted all temptations to make injudicious flights. If he considered the weather conditions at all unsuitable he said that he would not ascend, no matter who might have come to see him fly, and that settled the question once and for all. He was deaf to all pleadings, to all proffered advice. When conditions were perfectly suitable, and then only, would he have his craft brought from its shed.

The same meticulous care, in every flight he made, marked his preparation of his machine. Motor, controls, propeller-gearing, every vital part, received its due attention; and this attention was never relaxed, no matter how frequently he flew, nor how great was his success. An observer of one of his early flights at Le Mans has given us an impression that is typical of this unremitting care. There was a question of some small adjustment that Wilbur had instructed should be made to the machine. When the time came to fly, and he was in the driving-seat waiting for the motor to be started, he called a question as to whether this detail had been attended to. He was a.s.sured it had.

But this was not enough for Wilbur Wright. Climbing from his seat and walking round the biplane, he made a careful examination for himself, and then returned quietly to the front of the machine. People who came to see him fly, and expected some picturesque hero, leaping lightly into his machine and sweeping through the air, found that reality disappointed them. This quiet, una.s.suming man, who slept in his shed near his aeroplane, and took his meals there also, refused to be feted or made a fuss of; while his deliberation in regard to every flight, and his indifference to the wishes or convenience of those who were watching him, drove nearly frantic some of those influential people who, coming in motor-cars and with a patronising spirit, thought the aviator might be treated rather as a superior mountebank, who would be only too glad to come out and fly when a distinguished guest arrived.

M. Louis Bleriot, whose name was next to become world-famous, after that of the Wrights, and who owed his distinction to his crossing of the English Channel by air, revealed in his character determination and courage, and imagination as well. And yet allied to these qualities--and here lay his temperamental strength--he had a spirit of quiet calculation and an eery considerable shrewdness. He knew, and was not afraid of showing that he knew, the full value of caution. And yet on occasion also--as in the cross-Channel flight--he was ready to put everything to the test, and to take promptly and with full knowledge the heaviest of risks. The motor in his cross-Channel monoplane was an experimental one of low power, air-cooled, and p.r.o.ne to over-heat and lose power after only a short period of running. To cross the Channel, even under the most favourable circ.u.mstances, he knew this engine must run without breakdown for thirty-five or forty minutes. This it had not done--at any rate in the air--before. There was a strong probability--and Bleriot knew this better than anyone else--that the motor would fail before he reached the English sh.o.r.e, and that he would have to glide down into the sea. It was arranged that a torpedo-boat-destroyer should follow him, and this afforded an element of safety. But Bleriot guessed--as was actually the case--that he would outdistance this vessel in his flight, and soon be lost to the view of those upon it. And he did not deceive himself as to what might happen, if his engine stopped and he fell into the water. His monoplane, as it lay on the surface of the water, would, he knew, prove a very difficult object to locate by any vessel searching for it; while it was so frail that it would not withstand for long the buffeting of the waves. He carried an air-bag fixed inside the fusilage, it is true; but, in spite of this precaution, Bleriot knew he ran a very grave peril of being drowned. There was, on the morning of his flight, another disturbing factor to be reckoned with. The wind, calm enough when he first determined to start, began very quickly to rise; and by the time he had motored from Calais to the spot where his aeroplane lay, and the machine itself was ready for flight, the wind out to sea was so strong that the waves had become white-capped. But Bleriot, aware of the value at such moments of decision, had made up his mind. He knew that, if his engine only served him, his flight would be quickly made. And so he reckoned that, even though the wind was rising, he would be able to complete his journey before it had become high enough seriously to inconvenience him; and in this calculation, as events proved, he was right. His motor did its work; and, though the wind tossed his machine dangerously when he came near the cliffs of the English coast, he succeeded in making a landing and in winning the 1000 prize.

M. Hubert Latham, Bleriot's compet.i.tor in the cross-Channel flight, had that peculiar outlook on life, with its blend of positive and negative--puzzling often to its owner as well as to the onlooker--that is called, for the sake of calling it something, the artistic temperament. He was impulsive, yet impa.s.sive often to a disconcerting extent: extremely sensitive and reserved as a rule, yet on occasion almost boyishly frank and communicative. He lacked entirely ordinary shrewdness, or everyday commonsense. He was a man of a deeply romantic temperament, and this inclined him towards aviation and the conquest of the air; while in actual piloting he had such a quickness and delicacy of touch, and such a sure and instinctive judgment of distance and of speed, that he was undoubtedly a born aviator--one of, if not the, finest the world has seen. That he did not attain greater success, from a practical point of view, was due to the fact that he was without the level-headedness and the business ability which characterised others of the pioneers. When he was in flight in his Antoinette--Latham flew that machine and no other--he was a supreme artist. His machine was beautiful, and his handling of it was beautiful.

M. Henri Farman, beyond question, of course, another of the great pioneers, is a man of imagination and of a highly nervous temperament, yet possessing at the same time a very p.r.o.nounced vein of caution. No success has for an instant caused him to lose his head. At Rheims, in 1909, when he had created a world's record by flying for more than three hours without alighting, those who hastened to congratulate him, after his descent, found him absolutely normal and unmoved. Washing his hands at a little basin in the corner of the shed, he discussed very quietly and yet interestedly, and entirely without any affectation of nonchalance, the details of his flight and the behaviour of his motor. His att.i.tude was that the flight was something, yet not a great deal, and that very much more remained to be done; a perfectly right and proper att.i.tude, one which was just as it should be, yet one encountered very rarely under such circ.u.mstances--human nature being what it is.

Farman's patience, his perseverance, were in the very early days what gave him his first success. With the biplane the Voisins built him, for example, nothing but his own determination, and his ceaseless work upon his engine, enabled him to do more with this type of machine than others had done.

As the aeroplane increased in efficiency, and in the reliability of its engine, and was used in cross-country journeys, there came an era of flying contests, in which large prizes were offered, and in which airmen pa.s.sed between cities and across frontiers, and traversed in their voyages the greater part of Europe. In the making of these flights, which needed an exceptional determination and skill, allied also to a perfect bodily fitness, there came into prominence certain aviators whose precision in their daily flights, pa.s.sing across country with the speed and regularity of express trains, won admiration throughout the world. Prominent among these champions was the French naval officer, Lieut. J. Conneau, who adopted in his contests the flying name of "Beaumont." His success and his exact.i.tude, when piloting a Bleriot monoplane for long distances above unknown country, guiding himself by map and compa.s.s, gave the public an indication, for the first time, of what might be accomplished by an expert airman when flying a reliable machine. Lieut. Conneau's success, winning as he did several of the great contests one after another, and the absence of error in his flying from stage to stage, and his accurate landings upon strange and often badly-surfaced aerodromes, should provide for the novice in aviation--when the secret of this success is understood--an object-lesson that is of value.

This quiet, efficient airman, and his methods in making himself so competent, afford indeed an interesting study. Here was one who, suited already by temperament for the tasks he undertook, trained himself with such care, with such patience, that he attained as nearly to the ideal as is possible for living man. When he had asked for, and obtained, permission from the Minister of Marine to study aviation in all its aspects, he began his task in a spirit that was admirable. "I was convinced," he wrote afterwards, "that a perfect knowledge of machines and motors was necessary before one could use them." For nearly a year, on leaving the sea, he worked to obtain a certificate as a practical engineer. This gained, he went through a period of motor-cycling and motor-car driving, varied by flights in captive balloons and free balloons, and afterwards in airships. Following this he obtained leave to stay for a time at Argenteuil, and enter the works of the builders of the Gnome motor. Here he lived the life of a mechanic, and learned to understand completely the operation of this famous engine, which he was destined to drive afterwards in his great flights.

Presently he went to Pau, in order to obtain his certificate as an aeroplane pilot. At first, taking his turn with a number of other pupils, he could only get a few minutes at a time in a machine. But being a keen observer he found that, by listening to the instructors, and watching the flights made, he could pick up useful information without being in the air; and this led him to the observation that "to learn to fly quickly, one must begin by staying on the ground."

He secured in due course his certificate of proficiency, astonishing the instructors by his skill and sureness in the handling of his machine. Then followed what might be called an apprenticeship to cross-country flying. He made constant flights in all weathers, flying for instance from Pau to Paris, and studying closely not only the piloting of his machine and the aerial conditions he encountered, but also the art of using a map and compa.s.s, and in finding a path without deviation from point to point. Improving daily in confidence and skill, and learning practically all there was to be learned as to the handling of a Gnome-engined Bleriot, he was able soon to fly under weather conditions which would have seemed hopeless to a pilot of less experience; while engine failure and other troubles, which overtook him frequently on these long flights, taught him to alight without damaging his machine on the most unpromising ground.

Now, feeling himself at last competent, he obtained permission to figure on the retired list, so that he might take part in the aviation races which were then being organised. Of these great contests Lieut.

Conneau won three in succession--the Paris-Rome Race, in which he flew 928 miles in 21 hours 10 minutes; the European Circuit, in which he flew 1,060 miles in a total flying time of 24 hours 18 minutes; and the Circuit of Britain, in which he flew 1,006 miles in 22 hours 26 minutes. Lieut. Conneau's success, which appeared extraordinary, and his skill in finding his way across country, which seemed abnormal, were due as a matter of fact to his a.s.siduous preparation, and to a temperament which, even under the heavy strains of constant flying, saved him from errors of judgment or ill-advised decisions. His temperament was, indeed, ideal for a racing airman. He was quiet and collected, with a natural tendency to resist excitement or confusion.

His physique was admirable, and he had that elasticity of strength, both in body and nerve, which are invaluable to a pilot when on long flights. Also, and this was of importance, Lieut. Conneau had a natural cheerfulness of disposition which carried him without irritation or despondency through those ordeals of weather, and of mechanical breakdowns and delays, which are inseparable from such contests as those in which he was engaged.

A contrast to Lieut. Conneau, both in temperament and method, was his rival Jules Vedrines--the aviator who, notably in the Circuit of Britain, flew doggedly against Lieut. Conneau from stage to stage.

Vedrines, who had not had the advantages in tuition that had been enjoyed by Lieut. Conneau, nor his grounding in technique, was nevertheless a born aviator; a man of a natural and exceptional skill.

In energy, courage, and determination he was unexcelled; but such qualities, though of extreme value in a long and trying contest, were marred by an impetuosity and an excitability which Vedrines could not master, and which more than once cost him dear. He had not, besides, as was shown in the Circuit of Britain, that skill in steering by map and compa.s.s which aided Lieut. Conneau so greatly in all his flying.

A personality of unusual interest was that of the late Mr. S. F.

Cody--a man of a great though untutored imagination, and of an extraordinary and ceaseless energy. A big man, and one whom it might be thought would have been clumsy in the handling of an aeroplane, he piloted the biplanes of his own construction with a remarkable skill.

He flew no other, of course, and this was greatly to his advantage in actual manipulation. The great pilots who have excelled--one may instance again Lieut. Conneau--have concentrated their attention as a rule on one type of machine, learning all there is to be learned about this particular craft, and being prepared in consequence, through their knowledge both of its capacities and weaknesses, for any contingency that may arise in flight. Another instance of such specialisation was provided by Mr. Gustave Hamel. M. Bleriot--an admirable judge in this respect--singled out Mr. Hamel, while this young man was learning to fly in France, as an aviator of quite unusual promise; and his prediction was, of course, more than fulfilled. Devoting himself exclusively to the monoplane, Mr. Hamel became a pilot whose perfection of control, very wonderful to witness, was marked strongly by his own individuality. He had beautiful "hands"--a precision and delicacy on the controls which marked his flying from that of all others; while his judgment of speed and distance, which was remarkable, represented natural abilities which had been improved and strengthened by his constant flying.

CHAPTER X

CROSS-COUNTRY FLYING

When a pupil has finished his flying school tests, and has received his certificate from the Royal Aero Club, he is in a stage of proficiency which means that he has learned to control an aeroplane when above an aerodrome and in conditions that are favourable, and that he may be relied on to make no elementary mistakes. But as to cross-country flying, with its greater hazards, he is still a novice, with everything to learn. And so it is to flights from point to point, generally between neighbouring aerodromes, that he next devotes himself.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Swordmaster's Youngest Son

Swordmaster's Youngest Son

Swordmaster's Youngest Son Chapter 696 Author(s) : 황제펭귄, Emperor Penguin View : 725,790
Nine Star Hegemon Body Arts

Nine Star Hegemon Body Arts

Nine Star Hegemon Body Arts Chapter 5613: Thirty Percent Chance? Author(s) : 平凡魔术师, Ordinary Magician View : 8,677,250
All My Disciples Suck!

All My Disciples Suck!

All My Disciples Suck! Chapter 770 Author(s) : Rotating Hot Pot, 回转火锅 View : 558,675
Chaos' Heir

Chaos' Heir

Chaos' Heir Chapter 952: Rules Author(s) : Eveofchaos View : 699,878
Star Odyssey

Star Odyssey

Star Odyssey Chapter 3282: Recognizing Reality Author(s) : Along With The Wind, 随散飘风 View : 2,249,052
I Am the Fated Villain

I Am the Fated Villain

I Am the Fated Villain Chapter 1371 Author(s) : Fated Villain, 天命反派 View : 1,310,681

Learning To Fly Part 4 summary

You're reading Learning To Fly. This manga has been translated by Updating. Author(s): Claude Grahame-White and Harry Harper. Already has 577 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com