Home

Lay Sermons, Addresses and Reviews Part 7

Lay Sermons, Addresses and Reviews - novelonlinefull.com

You’re read light novel Lay Sermons, Addresses and Reviews Part 7 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[4] "In the third place, we have to review the method of Comparison, which is so specially adapted to the study of living bodies, and by which, above all others, that study must be advanced. In Astronomy, this method is necessarily inapplicable; and it is not till we arrive at Chemistry that this third means of investigation can be used, and then only in subordination to the two others. It is in the study, both statical and dynamical, of living bodies that it first acquires its full development; and its use elsewhere can be only through its application here."--COMTE'S _Positive Philosophy_, translated by Miss Martineau.

Vol. i. p. 372.

By what method does M. Comte suppose that the equality or inequality of forces and quant.i.ties and the dissimilarity or similarity of forms--points of some slight importance not only in Astronomy and Physics, but even in Mathematics--are ascertained, if not by Comparison?

[5] "Proceeding to the second cla.s.s of means,--Experiment cannot but be less and less decisive, in proportion to the complexity of the phaenomena to be explored; and therefore we saw this resource to be less effectual in chemistry than in physics: and we now find that it is eminently useful in chemistry in comparison with physiology. _In fact, the nature of the phaenomena seems to offer almost insurmountable impediments to any extensive and prolific application of such a procedure in biology._"--Comte, vol i. p. 367.

M. Comte, as his manner is, contradicts himself two pages further on, but that will hardly relieve him from the responsibility of such a paragraph as the above.

[6] "Nouvelle Fonction du Foie considere comme organe producteur de matiere sucree chez l'Homme et les Animaux," par M. Claude Bernard.

[7] "_Natural Groups given by Type, not by Definition...._ The cla.s.s is steadily fixed, though not precisely limited; it is given, though not circ.u.mscribed; it is determined, not by a boundary-line without, but by a central point within; not by what it strictly excludes, but what it eminently includes; by an example, not by a precept; in short, instead of Definition we have a _Type_ for our director. A type is an example of any cla.s.s, for instance, a species of a genus, which is considered as eminently possessing the characters of the cla.s.s. All the species which have a greater affinity with this type-species than with any others, form the genus, and are ranged about it, deviating from it in various directions and different degrees."--WHEWELL, _The Philosophy of the Inductive Sciences_, vol. i. pp. 476, 477.

[8] Save for the pleasure of doing so, I need hardly point out my obligations to Mr. J.S. Mill's "System of Logic," in this view of scientific method.

VI.

ON THE STUDY OF ZOOLOGY.

Natural history is the name familiarly applied to the study of the properties of such natural bodies as minerals, plants, and animals; the sciences which embody the knowledge man has acquired upon these subjects are commonly termed Natural Sciences, in contradistinction to other, so-called "physical," sciences; and those who devote themselves especially to the pursuit of such sciences have been, and are, commonly termed "Naturalists."

Linnaeus was a naturalist in this wide sense, and his "Systema Naturae"

was a work upon natural history, in the broadest acceptation of the term; in it, that great methodizing spirit embodied all that was known in his time of the distinctive characters of minerals, animals, and plants. But the enormous stimulus which Linnaeus gave to the investigation of nature soon rendered it impossible that any one man should write another "Systema Naturae," and extremely difficult for any one to become a naturalist such as Linnaeus was.

Great as have been the advances made by all the three branches of science, of old included under the t.i.tle of natural history, there can be no doubt that zoology and botany have grown in an enormously greater ratio than mineralogy; and hence, as I suppose, the name of "natural history" has gradually become more and more definitely attached to these prominent divisions of the subject, and by "naturalist" people have meant more and more distinctly to imply a student of the structure and functions of living beings.

However this may be, it is certain that the advance of knowledge has gradually widened the distance between mineralogy and its old a.s.sociates, while it has drawn zoology and botany closer together; so that of late years it has been found convenient (and indeed necessary) to a.s.sociate the sciences which deal with vitality and all its phenomena under the common head of "biology;" and the biologists have come to repudiate any blood-relationship with their foster-brothers, the mineralogists.

Certain broad laws have a general application throughout both the animal and the vegetable worlds, but the ground common to these kingdoms of nature is not of very wide extent, and the multiplicity of details is so great, that the student of living beings finds himself obliged to devote his attention exclusively either to the one or the other. If he elects to study plants, under any aspect, we know at once what to call him; he is a botanist, and his science is botany. But if the investigation of animal life be his choice, the name generally applied to him will vary, according to the kind of animals he studies, or the particular phenomena of animal life to which he confines his attention. If the study of man is his object, he is called an anatomist, or a physiologist, or an ethnologist; but if he dissects animals, or examines into the mode in which their functions are performed, he is a comparative anatomist or comparative physiologist. If he turns his attention to fossil animals, he is a palaeontologist. If his mind is more particularly directed to the description, specific discrimination, cla.s.sification, and distribution of animals, he is termed a zoologist.

For the purposes of the present discourse, however, I shall recognise none of these t.i.tles save the last, which I shall employ as the equivalent of botanist, and I shall use the term zoology as denoting the whole doctrine of animal life, in contradistinction to botany, which signifies the whole doctrine of vegetable life.

Employed in this sense, zoology, like botany, is divisible into three great but subordinate sciences, morphology, physiology, and distribution, each of which may, to a very great extent, be studied independently of the other.

Zoological morphology is the doctrine of animal form or structure.

Anatomy is one of its branches, development is another; while cla.s.sification is the expression of the relations which different animals bear to one another, in respect of their anatomy and their development.

Zoological distribution is the study of animals in relation to the terrestrial conditions which obtain now, or have obtained at any previous epoch of the earth's history.

Zoological physiology, lastly, is the doctrine of the functions or actions of animals. It regards animal bodies as machines impelled by certain forces, and performing an amount of work, which can be expressed in terms of the ordinary forces of nature. The final object of physiology is to deduce the facts of morphology, on the one hand, and those of distribution on the other, from the laws of the molecular forces of matter.

Such is the scope of zoology. But if I were to content myself with the enunciation of these dry definitions, I should ill exemplify that method of teaching this branch of physical science, which it is my chief business to-night to recommend. Let us turn away then from abstract definitions. Let us take some concrete living thing, some animal, the commoner the better, and let us see how the application of common sense and common logic to the obvious facts it presents, inevitably leads us into all these branches of zoological science.

I have before me a lobster. When I examine it, what appears to be the most striking character it presents? Why, I observe that this part which we call the tail of the lobster, is made up of six distinct hard rings and a seventh terminal piece. If I separate one of the middle rings, say the third, I find it carries upon its under surface a pair of limbs or appendages, each of which consists of a stalk and two terminal pieces.

So that I can represent a transverse section of the ring and its appendages upon the diagram board in this way.

If I now take the fourth ring I find it has the same structure, and so have the fifth and the second; so that, in each of these divisions of the tail, I find parts which correspond with one another, a ring and two appendages; and in each appendage a stalk and two end pieces. These corresponding parts are called, in the technical language of anatomy, "h.o.m.ologous parts." The ring of the third division is the "h.o.m.ologue"

of the ring of the fifth, the appendage of the former is the h.o.m.ologue of the appendage of the latter. And, as each division exhibits corresponding parts in corresponding places, we say that all the divisions are constructed upon the same plan. But now let us consider the sixth division. It is similar to, and yet different from, the others. The ring is essentially the same as in the other divisions; but the appendages look at first as if they were very different; and yet when we regard them closely, what do we find? A stalk and two terminal divisions, exactly as in the others, but the stalk is very short and very thick, the terminal divisions are very broad and flat, and one of them is divided into two pieces.

I may say, therefore, that the sixth segment is like the others in plan, but that it is modified in its details.

The first segment is like the others, so far as its ring is concerned, and though its appendages differ from any of those yet examined in the simplicity of their structure, parts corresponding with the stem and one of the divisions of the appendages of the other segments can be readily discerned in them.

Thus it appears that the lobster's tail is composed of a series of segments which are fundamentally similar, though each presents peculiar modifications of the plan common to all. But when I turn to the fore part of the body I see, at first, nothing but a great shield-like sh.e.l.l, called technically the "carapace," ending in front in a sharp spine, on either side of which are the curious compound eyes, set upon the ends of stout moveable stalks. Behind these, on the under side of the body, are two pairs of long feelers, or antennae, followed by six pairs of jaws, folded against one another over the mouth, and five pairs of legs, the foremost of these being the great pinchers, or claws, of the lobster.

It looks, at first, a little hopeless to attempt to find in this complex ma.s.s a series of rings, each with its pair of appendages, such as I have shown you in the abdomen, and yet it is not difficult to demonstrate their existence. Strip off the legs, and you will find that each pair is attached to a very definite segment of the under wall of the body; but these segments, instead of being the lower parts of free rings, as in the tail, are such parts of rings which are all solidly united and bound together; and the like is true of the jaws, the feelers, and the eye-stalks, every pair of which is borne upon its own special segment.

Thus the conclusion is gradually forced upon us, that the body of the lobster is composed of as many rings as there are pairs of appendages, namely, twenty in all, but that the six hindmost rings remain free and moveable, while the fourteen front rings become firmly soldered together, their backs forming one continuous shield--the carapace.

Unity of plan, diversity in execution, is the lesson taught by the study of the rings of the body, and the same instruction is given still more emphatically by the appendages. If I examine the outermost jaw I find it consists of three distinct portions, an inner, a middle, and an outer, mounted upon a common stem; and if I compare this jaw with the legs behind it, or the jaws in front of it, I find it quite easy to see, that, in the legs, it is the part of the appendage which corresponds with the inner division, which becomes modified into what we know familiarly as the "leg," while the middle division, disappears, and the outer division is hidden under the carapace. Nor is it more difficult to discern that, in the appendages of the tail, the middle division appears again and the outer vanishes; while, on the other hand, in the foremost jaw, the so-called mandible, the inner division only is left; and, in the same way, the parts of the feelers and of the eye-stalks can be identified with those of the legs and jaws.

But whither does all this tend? To the very remarkable conclusion that a unity of plan, of the same kind as that discoverable in the tail or abdomen of the lobster, pervades the whole organization of its skeleton, so that I can return to the diagram representing any one of the rings of the tail, which I drew upon the board, and by adding a third division to each appendage, I can use it as a sort of scheme or plan of any ring of the body. I can give names to all the parts of that figure, and then if I take any segment of the body of the lobster, I can point out to you exactly, what modification the general plan has undergone in that particular segment; what part has remained moveable, and what has become fixed to another; what has been excessively developed and metamorphosed, and what has been suppressed.

But I imagine I hear the question, How is all this to be tested? No doubt it is a pretty and ingenious way of looking at the structure of any animal, but is it anything more? Does Nature acknowledge, in any deeper way, this unity of plan we seem to trace?

The objection suggested by these questions is a very valid and important one, and morphology was in an unsound state, so long as it rested upon the mere perception of the a.n.a.logies which obtain between fully formed parts. The unchecked ingenuity of speculative anatomists proved itself fully competent to spin any number of contradictory hypotheses out of the same facts, and endless morphological dreams threatened to supplant scientific theory.

Happily, however, there is a criterion of morphological truth, and a sure test of all h.o.m.ologies. Our lobster has not always been what we see it; it was once an egg, a semifluid ma.s.s of yolk, not so big as a pin's head, contained in a transparent membrane, and exhibiting not the least trace of any one of those organs, whose multiplicity and complexity, in the adult, are so surprising. After a time a delicate patch of cellular membrane appeared upon one face of this yolk, and that patch was the foundation of the whole creature, the clay out of which it would be moulded. Gradually investing the yolk, it became subdivided by transverse constrictions into segments, the forerunners of the rings of the body. Upon the ventral surface of each of the rings thus sketched out, a pair of bud-like prominences made their appearance--the rudiments of the appendages of the ring. At first, all the appendages were alike, but, as they grew, most of them became distinguished into a stem and two terminal divisions, to which, in the middle part of the body, was added a third outer division; and it was only at a later period, that by the modification, or abortion, of certain of these primitive const.i.tuents, the limbs acquired their perfect form.

Thus the study of development proves that the doctrine of unity of plan is not merely a fancy, that it is not merely one way of looking at the matter, but that it is the expression of deep-seated natural facts. The legs and jaws of the lobster may not merely be regarded as modifications of a common type,--in fact and in nature they are so,--the leg and the jaw of the young animal being, at first, indistinguishable.

These are wonderful truths, the more so because the zoologist finds them to be of universal application. The investigation of a polype, of a snail, of a fish, of a horse, or of a man, would have led us, though by a less easy path, perhaps, to exactly the same point. Unity of plan everywhere lies hidden under the mask of diversity of structure--the complex is everywhere evolved out of the simple. Every animal has at first the form of an egg, and every animal and every organic part, in reaching its adult state, pa.s.ses through conditions common to other animals and other adult parts; and this leads me to another point. I have hitherto spoken as if the lobster were alone in the world, but, as I need hardly remind you, there are myriads of other animal organisms.

Of these, some, such as men, horses, birds, fishes, snails, slugs, oysters, corals, and sponges, are not in the least like the lobster. But other animals, though they may differ a good deal from the lobster, are yet either very like it, or are like something that is like it. The cray fish, the rock lobster, and the prawn, and the shrimp, for example, however different, are yet so like lobsters, that a child would group them as of the lobster kind, in contradistinction to snails and slugs; and these last again would form a kind by themselves, in contradistinction to cows, horses, and sheep, the cattle kind.

But this spontaneous grouping into "kinds" is the first essay of the human mind at cla.s.sification, or the calling by a common name of those things that are alike, and the arranging them in such a manner as best to suggest the sum of their likenesses and unlikenesses to other things.

Those kinds which include no other subdivisions than the s.e.xes, or various breeds, are called, in technical language, species. The English lobster is a species, our cray fish is another, our prawn is another. In other countries, however, there are lobsters, cray fish, and prawns, very like ours, and yet presenting sufficient differences to deserve distinction. Naturalists, therefore, express this resemblance and this diversity by grouping them as distinct species of the same "genus." But the lobster and the cray fish, though belonging to distinct genera, have many features in common, and hence are grouped together in an a.s.semblage which is called a family. More distant resemblances connect the lobster with the prawn and the crab, which are expressed by putting all these into the same order. Again, more remote, but still very definite, resemblances unite the lobster with the woodlouse, the king crab, the water-flea, and the barnacle, and separate them from all other animals; whence they collectively const.i.tute the larger group, or cla.s.s, _Crustacea_. But the _Crustacea_ exhibit many peculiar features in common with insects, spiders, and centipedes, so that these are grouped into the still larger a.s.semblage or "province" _Articulata_; and, finally, the relations which these have to worms and other lower animals, are expressed by combining the whole vast aggregate into the sub-kingdom of _Annulosa_.

If I had worked my way from a sponge instead of a lobster, I should have found it a.s.sociated, by like ties, with a great number of other animals into the sub-kingdom _Protozoa_; if I had selected a fresh-water polype or a coral, the members of what naturalists term the sub-kingdom _Caelenterata_ would have grouped themselves around my type; had a snail been chosen, the inhabitants of all univalve and bivalve, land and water, sh.e.l.ls, the lamp sh.e.l.ls, the squids, and the sea-mat would have gradually linked themselves on to it as members of the same sub-kingdom of _Mollusca_; and finally, starting from man, I should have been compelled to admit first, the ape, the rat, the horse, the dog, into the same cla.s.s; and then the bird, the crocodile, the turtle, the frog, and the fish, into the same sub-kingdom of _Vertebrata_.

And if I had followed out all these various lines of cla.s.sification fully, I should discover in the end that there was no animal, either recent or fossil, which did not at once fall into one or other of these sub-kingdoms. In other words, every animal is organized upon one or other of the five, or more, plans, whose existence renders our cla.s.sification possible. And so definitely and precisely marked is the structure of each animal, that, in the present state of our knowledge, there is not the least evidence to prove that a form, in the slightest degree transitional between any of the two groups _Vertebrata, Annulosa, Mollusca_, and _Caelenterata_, either exists, or has existed, during that period of the earth's history which is recorded by the geologist.

Nevertheless, you must not for a moment suppose, because no such transitional forms are known, that the members of the sub-kingdoms are disconnected from, or independent of, one another. On the contrary, in their earliest condition they are all alike, and the primordial germs of a man, a dog, a bird, a fish, a beetle, a snail, and a polype are, in no essential structural respects, distinguishable.

In this broad sense, it may with truth be said, that all living animals, and all those dead creations which geology reveals, are bound together by an all-pervading unity of organization, of the same character, though not equal in degree, to that which enables us to discern one and the same plan amidst the twenty different segments of a lobster's body.

Truly it has been said, that to a clear eye the smallest fact is a window through which the Infinite may be seen.

Turning from these purely morphological considerations, let us now examine into the manner in which the attentive study of the lobster impels us into other lines of research.

Lobsters are found in all the European seas; but on the opposite sh.o.r.es of the Atlantic and in the seas of the southern hemisphere they do not exist. They are, however, represented in these regions by very closely allied, but distinct forms--the _Homarus America.n.u.s_ and the _Homarus Capensis_: so that we may say that the European has one species of _Homarus_; the American, another; the African, another; and thus the remarkable facts of geographical distribution begin to dawn upon us.

Again, if we examine the contents of the earth's crust, we shall find in the latter of those deposits, which have served as the great burying grounds of past ages, numberless lobster-like animals, but none so similar to our living lobster as to make zoologists sure that they belonged even to the same genus. If we go still further back in time, we discover, in the oldest rocks of all, the remains of animals, constructed on the same general plan as the lobster, and belonging to the same great group of _Crustacea_; but for the most part totally different from the lobster, and indeed from any other living form of crustacean; and thus we gain a notion of that successive change of the animal population of the globe, in past ages, which is the most striking fact revealed by geology.

Consider, now, where our inquiries have led us. We studied our type morphologically, when we determined its anatomy and its development, and when comparing it, in these respects, with other animals, we made out its place in a system of cla.s.sification. If we were to examine every animal in a similar manner, we should establish a complete body of zoological morphology.

Again, we investigated the distribution of our type in s.p.a.ce and in time, and, if the like had been done with every animal, the sciences of geographical and geological distribution would have attained their limit.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Shadow Slave

Shadow Slave

Shadow Slave Chapter 1989: Home Sweet Home Author(s) : Guiltythree View : 4,977,366
Doomsday Wonderland

Doomsday Wonderland

Doomsday Wonderland Chapter 1656: Sniping an Honest Person Author(s) : 须尾俱全, Beards And Tails View : 1,228,120
I Am the Fated Villain

I Am the Fated Villain

I Am the Fated Villain Chapter 1335 Author(s) : Fated Villain, 天命反派 View : 1,214,548
Supreme Magus

Supreme Magus

Supreme Magus Chapter 3280 Undefeated (Part 1) Author(s) : Legion20 View : 7,249,996

Lay Sermons, Addresses and Reviews Part 7 summary

You're reading Lay Sermons, Addresses and Reviews. This manga has been translated by Updating. Author(s): Thomas Henry Huxley. Already has 676 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com