Home

General Science Part 7

General Science - novelonlinefull.com

You’re read light novel General Science Part 7 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

A less familiar but more abundant const.i.tuent of the atmosphere is the nitrogen. Almost four fifths of the air around us is made up of nitrogen. If the atmosphere were composed of oxygen alone, the merest flicker of a match would set the whole world ablaze. The fact that the oxygen of the air is diluted as it were with so large a proportion of nitrogen, prevents fires from sweeping over the world and destroying everything in their path. Nitrogen does not support combustion, and a burning match placed in a corked bottle goes out as soon as it has used up the oxygen in the bottle. The nitrogen in the bottle, not only does not a.s.sist the burning of the match, but it acts as a damper to the burning.

Free nitrogen, like oxygen, is a colorless, odorless gas. It is not poisonous; but one would die if surrounded by nitrogen alone, just as one would die if surrounded by water. The vast supply of nitrogen in the atmosphere would be useless if the smaller amount of oxygen were not present to keep the body alive. Nitrogen is so important a factor in daily life that an entire chapter will be devoted to it later.

Another const.i.tuent of the air with which we are familiar is carbon dioxide. In pure air, carbon dioxide is present in very small proportion, being continually taken from the air by plants in the manufacture of their food.

Various other substances are present in the air in very minute proportions, but of all the substances in the air, oxygen, nitrogen, and carbon dioxide are the most important.

CHAPTER VIII



GENERAL PROPERTIES OF GASES

85. Bicycle Tires. We know very well that we cannot put more than a certain amount of water in a tube, but we know equally well that the amount of air which can be pumped into a bicycle or automobile tire depends largely upon our muscular energy. A gallon of water remains a gallon of water and requires a perfectly definite amount of s.p.a.ce, but air can be compressed and compressed, and made to occupy less and less s.p.a.ce. While it is true that air is easily compressed, it is also true that air is elastic and capable of very rapid and easy expansion. If a puncture occurs in a tire, the compressed air escapes very quickly; that is, the compressed air within the tube has taken the first opportunity offered for expansion.

[Ill.u.s.tration: FIG. 51.--By squeezing the bulb, air is forced out of the nozzle.]

The fact that air is elastic has added materially to the comfort of the world. Transportation by bicycles and automobiles has been greatly facilitated by the use of air tires. In many hospitals, air mattresses are used in place of hair, feather, or cotton mattresses, and in this way the bed is kept fresher and cleaner, and can be moved with less danger of discomfort to the patient. Every time we squeeze the bulb of an atomizer, we force compressed or condensed air through the atomizer, and the condensed air pushes the liquid out of the nozzle (Fig. 51). Thus we see that in the necessities and conveniences of life compressed air plays an important part.

86. The Danger of Compression. Air under ordinary atmospheric conditions exerts a pressure of 15 pounds to the square inch. If, now, large quant.i.ties of air are compressed into a small s.p.a.ce, the pressure exerted becomes correspondingly greater. If too much air is blown into a toy balloon, the balloon bursts because it cannot support the great pressure exerted by the compressed air within. What is true of air is true of all gases. Dangerous boiler explosions have occurred because the boiler walls were not strong enough to withstand the pressure of the steam (which is water in the form of gas). The pressure within the boilers of engines is frequently several hundred pounds to the square inch, and such a pressure needs a strong boiler.

87. How Pressure is Measured in Buildings. In the preceding Section we saw that undue pressure of a gas may cause explosion. It is important, therefore, that authorities keep strict watch on gases confined within pipes and reservoirs, never allowing the pressure to exceed that which the walls of the reservoir will safely bear.

[Ill.u.s.tration: FIG. 52.--A pressure gauge.]

Pressure in a gas pipe may be measured by a simple instrument called the pressure gauge: The gauge consists of a bent gla.s.s tube containing mercury, and so made that one end can be fitted to a gas jet (Fig.

52). When the gas c.o.c.k is closed, the mercury stands at the same level in both arms, but when the c.o.c.k is opened, the gas whose pressure is being measured forces the mercury up the opposite arm. If the pressure of the gas is small, the mercury changes its level but very little. It is clear that the height of a column of mercury is a measure of the gas pressure. Now it is known that one cubic inch of mercury weighs about half a pound. Hence a column of mercury one inch high indicates a pressure of about one half pound to the square inch; a column two inches high indicates a pressure of about one pound to the square inch, and so on.

This is a very convenient way to measure the pressure of the illuminating gas in our homes and offices. The gauge is attached to the gas burner and the pressure is read by means of a scale attached to the gauge. (See Laboratory Manual.)

In order to have satisfactory illumination, the pressure must be strong enough to give a steady, broad flame. If the flame from any gas jet is flickering and weak, it is usually an indication of insufficient pressure and the gas company should investigate conditions and see to it that the consumer receives his proper value.

87. The Gas Meter. Most householders are deeply interested in the actual amount of gas which they consume (gas is charged for according to the number of cubic feet used), and therefore they should be able to read the gas meter which indicates their consumption of gas. Such gas meters are furnished by the companies, and can be read easily.

[Ill.u.s.tration: FIG. 53.--The gas meter indicates the number of cubic feet of gas consumed.]

The instrument itself is somewhat complex. It will suffice to say that within the meter box are thin disks which are moved by the stream of gas that pa.s.ses them. This movement of the disks is recorded by clockwork devices on a dial face. In this way, the number of cubic feet of gas which pa.s.s through the meter is automatically registered.

89. The Relation between Pressure and Volume. It was long known that as the pressure of a gas increases, that is, as it becomes compressed, its volume decreases, but Robert Boyle was the first to determine the exact relation between the volume and the pressure of a gas. He did this in a very simple manner.

Pour mercury into a U-shaped tube until the level of the mercury in the closed end of the tube is the same as the level in the open end.

The air in the long arm is pressing upon the mercury in that arm, and is tending to force it up the short arm. The air in the short closed arm is pressing down upon the mercury in that arm and tending to send it up the long arm. Since the mercury is at the same level in the two arms, the pressure in the long arm must be equal to the pressure in the short arm. But the long arm is open, and the pressure in that arm is the pressure of the atmosphere. Therefore the pressure in the short arm must be one atmosphere. Measure the distance _bc_ between the top of the mercury and the closed end of the tube.

[Ill.u.s.tration: FIGS. 54, 55.--As the pressure on the gas increases, its volume decreases.]

Pour more mercury into the open end of the tube, and as the mercury rises higher and higher in the long arm, note carefully the decrease in the volume of the air in the short arm. Pour mercury into the tube until the difference in level _bd_ is just equal to the barometric height, approximately 32 inches. The pressure of the air in the closed end now supports the pressure of one atmosphere, and in addition, a column of mercury equal to another atmosphere. If now the air column in the closed end is measured, its volume will be only one half of its former volume. By doubling the pressure we have reduced the volume one half. Similarly, if the pressure is increased threefold, the volume will be reduced to one third of the original volume.

90. Heat due to Compression. We saw in Section 89 that whenever the pressure exerted upon a gas is increased, the volume of the gas is decreased; and that whenever the pressure upon a gas is decreased, the volume of the gas is increased. If the pressure is changed very slowly, the change in the temperature of the gas is imperceptible; if, however, the pressure is removed suddenly, the temperature falls rapidly, or if the pressure is applied suddenly, the temperature rises rapidly. When bicycle tires are being inflated, the pump becomes hot because of the compression of the air.

The amount of heat resulting from compression is surprisingly large; for example, if a ma.s.s of gas at 0 C. is suddenly compressed to one half its original volume, its temperature rises 87 C.

91. Cooling by Expansion. If a gas expands suddenly, its temperature falls; for example, if a ma.s.s of gas at 87 C. is allowed to expand rapidly to twice its original volume, its temperature falls to 0 C.

If the compressed air of a bicycle tire is allowed to expand and a sensitive thermometer is held in the path of the escaping air, the thermometer will show a decided drop in temperature.

The low temperature obtained by the expansion of air or other gases is utilized commercially on a large scale. By means of powerful pistons air is compressed to one third or one fourth its original volume, is pa.s.sed through a coil of pipe surrounded with cold water, and is then allowed to escape into large refrigerating vaults, which thereby have their temperatures noticeably lowered, and can be used for the permanent storage of meats, fruits, and other perishable material. In summer, when the atmospheric temperature is high, the storage and preservation of foods is of vital importance to factories and cold storage houses, and but for the low temperature obtainable by the expansion of compressed gases, much of our food supply would be lost to use.

92. Unexpected Transformations. If the pressure on a gas is greatly increased, a sudden transformation sometimes occurs and the gas becomes a liquid. Then, if the pressure is reduced, a second transformation occurs, and the liquid evaporates or returns to its original form as a gas.

In Section 23 we saw that a fall of temperature caused water vapor to condense or liquefy. If temperature alone were considered, most gases could not be liquefied, because the temperature at which the average gas liquefies is so low as to be out of the range of possibility; it has been calculated, for example, that a temperature of 252 C. below zero would have to be obtained in order to liquefy hydrogen.

Some gases can be easily transformed into liquids by pressure alone, some gases can be easily transformed into liquids by cooling alone; on the other hand, many gases are so difficult to liquefy that both pressure and low temperature are needed to produce the desired result.

If a gas is cooled and compressed at the same time, liquefaction occurs much more surely and easily than though either factor alone were depended upon. The air which surrounds us, and of whose existence we are scarcely aware, can be reduced to the form of a liquid, but the pressure exerted upon the portion to be liquefied must be thirty-nine times as great as the atmospheric pressure, and the temperature must have been reduced to a very low point.

93. Artificial Ice. Ammonia gas is liquefied by strong pressure and low temperature and is then allowed to flow into pipes which run through tanks containing salt water. The reduction of pressure causes the liquid to evaporate or turn to a gas, and the fall of temperature which always accompanies evaporation means a lowering of the temperature of the salt water to 16 or 18 below zero. But immersed in the salt water are molds containing pure water, and since the freezing point of water is 0 C, the water in the molds freezes and can be drawn from the mold as solid cakes of ice.

[Ill.u.s.tration: FIG. 56.--Apparatus for making artificial ice.]

Ammonia gas is driven by the pump _C_ into the coil _D_ (Fig. 56) under a pressure strong enough to liquefy it, the heat generated by this compression being carried off by cold water which constantly circulates through _B_. The liquid ammonia flows through the regulating valve _V_ into the coil _E_, in which the pressure is kept low by the pump _C_. The accompanying expansion reduces the temperature to a very low degree, and the brine which circulates around the coil _E_ acquires a temperature below the freezing point of pure water. The cold brine pa.s.ses from _A_ to a tank in which are immersed cans filled with water, and within a short time the water in the cans is frozen into solid cakes of ice.

CHAPTER IX

INVISIBLE OBJECTS

94. Very Small Objects. We saw in Section 84 that gases have a tendency to expand, but that they can be compressed by the application of force. This observation has led scientists to suppose that substances are composed of very minute particles called molecules, separated by small s.p.a.ces called pores; and that when a gas is condensed, the pores become smaller, and that when a gas expands, the pores become larger.

The fact that certain substances are soluble, like sugar in water, shows that the molecules of sugar find a lodging place in the s.p.a.ces or pores between the molecules of water, in much the same way that pebbles find lodgment in the c.h.i.n.ks of the coal in a coal scuttle. An indefinite quant.i.ty of sugar cannot be dissolved in a given quant.i.ty of liquid, because after a certain amount of sugar has been dissolved all the pores become filled, and there is no available molecular s.p.a.ce. The remainder of the sugar settles at the bottom of the vessel, and cannot be dissolved by any amount of stirring.

If a piece of pota.s.sium permanganate about the size of a grain of sand is put into a quart of water, the solid disappears and the water becomes a deep rich red. The solid evidently has dissolved and has broken up into minute particles which are too small to be seen, but which have scattered themselves and lodged in the pores of the water, thus giving the water its rich color.

There is no visible proof of the existence of molecules and molecular s.p.a.ces, because not only are our eyes unable to see them directly, but even the most powerful microscope cannot make them visible to us. They are so small that if one thousand of them were laid side by side, they would make a speck too small to be seen by the eye and too small to be visible under the most powerful microscope.

We cannot see molecules or molecular pores, but the phenomena of compression and expansion, solubility and other equally convincing facts, have led us to conclude that all substances are composed of very minute particles or molecules separated by s.p.a.ces called pores.

95. Journeys Made by Molecules. If a gas jet is turned on and not lighted, an odor of gas soon becomes perceptible, not only throughout the room, but in adjacent halls and even in distant rooms. An uncorked bottle of cologne scents an entire room, the odor of a rose or violet permeates the atmosphere near and far. These simple everyday occurrences seem to show that the molecules of a gas must be in a state of continual and rapid motion. In the case of the cologne, some molecules must have escaped from the liquid by the process of evaporation and traveled through the air to the nose. We know that the molecules of a liquid are in motion and are continually pa.s.sing into the air because in time the vessel becomes empty. The only way in which this could happen would be for the molecules of the liquid to pa.s.s from the liquid into the surrounding medium; but this is really saying that the molecules are in motion.

From these phenomena and others it is reasonably clear that substances are composed of molecules, and that molecules are not inert, quiet particles, but that they are in incessant motion, moving rapidly hither and thither, sometimes traveling far, sometimes near. Even the log of wood which lies heavy and motionless on our woodpile is made up of countless billions of molecules each in rapid incessant motion.

The molecules of solid bodies cannot escape so readily as those of liquids and gases, and do not travel far. The log lies year after year in an apparently motionless condition, but if one's eyes were keen enough, the molecules would be seen moving among themselves, even though they cannot escape into the surrounding medium and make long journeys as do the molecules of liquids and gases.

96. The Companions of Molecules. Common sense tells us that a molecule of water is not the same as a molecule of vinegar; the molecules of each are extremely small and in rapid motion, but they differ essentially, otherwise one substance would be like every other substance. What is it that makes a molecule of water differ from a molecule of vinegar, and each differ from all other molecules? Strange to say, a molecule is not a simple object, but is quite complex, being composed of one or more smaller particles, called atoms, and the number and kind of atoms in a molecule determine the type of the molecule, and the type of the molecule determines the substance. For example, a gla.s.s of water is composed of untold millions of molecules, and each molecule is a company of three still smaller particles, one of which is called the oxygen atom and two of which are alike in every particular and are called hydrogen atoms.

97. Simple Molecules. Generally molecules are composed of atoms which are different in kind. For example, the molecule of water has two different atoms, the oxygen atom and the hydrogen atoms; alcohol has three different kinds of atoms, oxygen, hydrogen, and carbon.

Sometimes, however, molecules are composed of a group of atoms all of which are alike. Now there are but seventy or eighty different kinds of atoms, and hence there can be but seventy or eighty different substances whose molecules are composed of atoms which are alike. When the atoms comprising a molecule are all alike, the substance is called an element, and is said to be a simple substance. Throughout the length and breadth of this vast world of ours there are only about eighty known elements. An element is the simplest substance conceivable, because it has not been separated into anything simpler.

Water is a compound substance. It can be separated into oxygen and hydrogen.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

I Beg You All, Please Shut Up

I Beg You All, Please Shut Up

I Beg You All, Please Shut Up Chapter 366 Author(s) : 天道不轮回, The Cycles Of Heaven Doesn't Exist View : 340,423

General Science Part 7 summary

You're reading General Science. This manga has been translated by Updating. Author(s): Bertha May Clark. Already has 631 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com