From the Earth to the Moon - novelonlinefull.com
You’re read light novel From the Earth to the Moon Part 5 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
"If we follow the usual proportion," replied Morgan, "a diameter of 108 inches would require sides of two feet thickness, or less."
"That would be too much," replied Barbicane; "for you will observe that the question is not that of a shot intended to pierce an iron plate; it will suffice to give it sides strong enough to resist the pressure of the gas. The problem, therefore, is this-- What thickness ought a cast-iron sh.e.l.l to have in order not to weight more than 20,000 pounds? Our clever secretary will soon enlighten us upon this point."
"Nothing easier." replied the worthy secretary of the committee; and, rapidly tracing a few algebraical formulae upon paper, among which _n_^2 and _x_^2 frequently appeared, he presently said:
"The sides will require a thickness of less than two inches."
"Will that be enough?" asked the major doubtfully.
"Clearly not!" replied the president.
"What is to be done, then?" said Elphinstone, with a puzzled air.
"Employ another metal instead of iron."
"Copper?" said Morgan.
"No! that would be too heavy. I have better than that to offer."
"What then?" asked the major.
"Aluminum!" replied Barbicane.
"Aluminum?" cried his three colleagues in chorus.
"Unquestionably, my friends. This valuable metal possesses the whiteness of silver, the indestructibility of gold, the tenacity of iron, the fusibility of copper, the lightness of gla.s.s. It is easily wrought, is very widely distributed, forming the base of most of the rocks, is three times lighter than iron, and seems to have been created for the express purpose of furnishing us with the material for our projectile."
"But, my dear president," said the major, "is not the cost price of aluminum extremely high?"
"It was so at its first discovery, but it has fallen now to nine dollars a pound."
"But still, nine dollars a pound!" replied the major, who was not willing readily to give in; "even that is an enormous price."
"Undoubtedly, my dear major; but not beyond our reach."
"What will the projectile weigh then?" asked Morgan.
"Here is the result of my calculations," replied Barbicane.
"A shot of 108 inches in diameter, and twelve inches in thickness, would weigh, in cast-iron, 67,440 pounds; cast in aluminum, its weight will be reduced to 19,250 pounds."
"Capital!" cried the major; "but do you know that, at nine dollars a pound, this projectile will cost----"
"One hundred and seventy-three thousand and fifty dollars ($173,050).
I know it quite well. But fear not, my friends; the money will not be wanting for our enterprise. I will answer for it. Now what say you to aluminum, gentlemen?"
"Adopted!" replied the three members of the committee. So ended the first meeting. The question of the projectile was definitely settled.
CHAPTER VII
HISTORY OF THE CANNON
The resolutions pa.s.sed at the last meeting produced a great effect out of doors. Timid people took fright at the idea of a shot weighing 20,000 pounds being launched into s.p.a.ce; they asked what cannon could ever transmit a sufficient velocity to such a mighty ma.s.s. The minutes of the second meeting were destined triumphantly to answer such questions. The following evening the discussion was renewed.
"My dear colleagues," said Barbicane, without further preamble, "the subject now before us is the construction of the engine, its length, its composition, and its weight. It is probable that we shall end by giving it gigantic dimensions; but however great may be the difficulties in the way, our mechanical genius will readily surmount them. Be good enough, then, to give me your attention, and do not hesitate to make objections at the close.
I have no fear of them. The problem before us is how to communicate an initial force of 12,000 yards per second to a sh.e.l.l of 108 inches in diameter, weighing 20,000 pounds. Now when a projectile is launched into s.p.a.ce, what happens to it? It is acted upon by three independent forces: the resistance of the air, the attraction of the earth, and the force of impulsion with which it is endowed.
Let us examine these three forces. The resistance of the air is of little importance. The atmosphere of the earth does not exceed forty miles. Now, with the given rapidity, the projectile will have traversed this in five seconds, and the period is too brief for the resistance of the medium to be regarded otherwise than as insignificant. Proceding, then, to the attraction of the earth, that is, the weight of the sh.e.l.l, we know that this weight will diminish in the inverse ratio of the square of the distance.
When a body left to itself falls to the surface of the earth, it falls five feet in the first second; and if the same body were removed 257,542 miles further off, in other words, to the distance of the moon, its fall would be reduced to about half a line in the first second. That is almost equivalent to a state of perfect rest.
Our business, then, is to overcome progressively this action of gravitation. The mode of accomplishing that is by the force of impulsion."
"There's the difficulty," broke in the major.
"True," replied the president; "but we will overcome that, for the force of impulsion will depend on the length of the engine and the powder employed, the latter being limited only by the resisting power of the former. Our business, then, to-day is with the dimensions of the cannon."
"Now, up to the present time," said Barbicane, "our longest guns have not exceeded twenty-five feet in length. We shall therefore astonish the world by the dimensions we shall be obliged to adopt. It must evidently be, then, a gun of great range, since the length of the piece will increase the detention of the gas acc.u.mulated behind the projectile; but there is no advantage in pa.s.sing certain limits."
"Quite so," said the major. "What is the rule in such a case?"
"Ordinarily the length of a gun is twenty to twenty-five times the diameter of the shot, and its weight two hundred and thirty-five to two hundred and forty times that of the shot."
"That is not enough," cried J. T. Maston impetuously.
"I agree with you, my good friend; and, in fact, following this proportion for a projectile nine feet in diameter, weighing 30,000 pounds, the gun would only have a length of two hundred and twenty- five feet, and a weight of 7,200,000 pounds."
"Ridiculous!" rejoined Maston. "As well take a pistol."
"I think so too," replied Barbicane; "that is why I propose to quadruple that length, and to construct a gun of nine hundred feet."
The general and the major offered some objections; nevertheless, the proposition, actively supported by the secretary, was definitely adopted.
"But," said Elphinstone, "what thickness must we give it?"
"A thickness of six feet," replied Barbicane.
"You surely don't think of mounting a ma.s.s like that upon a carriage?" asked the major.
"It would be a superb idea, though," said Maston.
"But impracticable," replied Barbicane. "No, I think of sinking this engine in the earth alone, binding it with hoops of wrought iron, and finally surrounding it with a thick ma.s.s of masonry of stone and cement. The piece once cast, it must be bored with great precision, so as to preclude any possible windage. So there will be no loss whatever of gas, and all the expansive force of the powder will be employed in the propulsion."
"One simple question," said Elphinstone: "is our gun to be rifled?"
"No, certainly not," replied Barbicane; "we require an enormous initial velocity; and you are well aware that a shot quits a rifled gun less rapidly than it does a smooth-bore."