Home

Experiments and Observations on Different Kinds of Air Part 5

Experiments and Observations on Different Kinds of Air - novelonlinefull.com

You’re read light novel Experiments and Observations on Different Kinds of Air Part 5 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

When a mouse putrefies in any given quant.i.ty of air, the bulk of it is generally increased for a few days; but in a few days more it begins to shrink up, and in about eight or ten days, if the weather be pretty warm, it will be found to be diminished 1/6, or 1/5 of its bulk. If it do not appear to be diminished after this time, it only requires to be pa.s.sed through water, and the diminution will not fail to be sensible. I have sometimes known almost the whole diminution to take place, upon once or twice pa.s.sing through the water. The same is the case with air, in which animals have breathed as long as they could. Also, air in which candles have burned out may almost always be farther reduced by this means.

All these processes, as I observed before, seem to dispose the compound ma.s.s of air to part with some const.i.tuent part belonging to it (which appears to be the _fixed air_ that enters into its const.i.tution) and this being miscible with water, must be brought into contact with it, in order to mix with it to the most advantage, especially when its union with the other const.i.tuent principles of the air is but partially broken.

I have put mice into vessels which had their mouths immersed in quicksilver, and observed that the air was not much contracted after they were dead or cold; but upon withdrawing the mice, and admitting lime water to the air, it immediately became turbid, and was contracted in its dimensions as usual.

I tried the same thing with air tainted with putrefaction, putting a dead mouse to a quant.i.ty of common air, in a vessel which had its mouth immersed in quicksilver, and after a week I took the mouse out, drawing it through the quicksilver, and observed that, for some time, there was an apparent increase of the air perhaps about 1/20. After this, it stood two days in the quicksilver, without any sensible alteration; and then admitting water to it, it began to be absorbed, and continued so, till the original quant.i.ty was diminished about 1/6. If, instead of common water, I had made use of lime-water in this experiment, I make no doubt but it would have become turbid.

If a quant.i.ty of lime-water in a phial be put under a gla.s.s vessel standing in water, it will not become turbid, and provided the access of the common air be prevented, it will continue lime-water, I do not know how long; but if a mouse be left to putrefy in the vessel, the water will deposit all its lime in a few days. This is owing to the fixed air deposited by the common air, and perhaps also from more fixed air discharged from the putrefying substances in some part of the process of putrefaction.



The air that is discharged from putrefying substances seems, in some cases, to be chiefly fixed air, with the addition of some other effluvium, which has the power of diminishing common air. The resemblance between the true putrid effluvium and fixed air in the following experiment, which is as decisive as I can possibly contrive it, appeared to be very great; indeed much greater than I had expected.

I put a dead mouse into a tall gla.s.s vessel, and having filled the remainder with quicksilver, and set it, inverted, in a pot of quicksilver, I let it stand about two months, in which time the putrid effluvium issuing from the mouse had filled the whole vessel, and part of the dissolved blood, which lodged upon the surface of the quicksilver, began to be thrown out. I then filled another gla.s.s vessel, of the same size and shape, with as pure fixed air as I could make, and exposed them both, at the same time, to a quant.i.ty of lime-water. In both cases the water grew turbid alike, it rose equally fast in both the vessels, and likewise equally high; so that about the same quant.i.ty remained unabsorbed by the water. One of these kinds of air, however, was exceedingly sweet and pleasant, and the other insufferably offensive; one of them also would have made an addition to any quant.i.ty of common air, with which it had been mixed, and the other would have diminished it. This, at least, would have been the consequence, if the mouse itself had putrefied in any quant.i.ty of common air.

It seems to depend, in some measure, upon the _time_, and other circ.u.mstances, in the dissolution of animal or vegetable substances, whether they yield the proper putrid effluvium, or fixed, or inflammable air; but the experiments which I have made upon this subject, have not been numerous enough to enable me to decide with certainty concerning those circ.u.mstances.

Putrid cabbage, green or boiled, infects the air in the very same manner as putrid animal substances. Air thus tainted is equally contracted in its dimensions, it equally extinguishes flame, and is equally noxious to animals; but they affect the air very differently, if the heat that is applied to them be considerable.

If beef or mutton, raw or boiled, be placed so near to the fire, that the heat to which it is exposed shall equal, or rather exceed, that of the blood, a considerable quant.i.ty of air will be generated in a day or two, about 1/7th of which I have generally found to be absorbed by water, while all the rest was inflammable; but air generated from vegetables, in the same circ.u.mstances, will be almost all fixed air, and no part of it inflammable. This I have repeated again and again, the whole process being in quicksilver; so that neither common air nor water, had any access to the substance on which the experiment was made; and the generation of air, or effluvium of any kind, except what might be absorbed by quicksilver, or resorbed by the substance itself, might be distinctly noted.

A vegetable substance, after standing a day or two in these circ.u.mstances, will yield nearly all the air that can be extracted from it, in that degree of heat; whereas an animal substance will continue to give more air, or effluvium, of some kind or other, with very little alteration, for many weeks. It is remarkable, however, that though a piece of beef or mutton, plunged in quicksilver, and kept in this degree of heat, yield air, the bulk of which is inflammable, and contracts no putrid smell (at least, in a day or two) a mouse treated in the same manner, yields the proper putrid effluvium, as indeed the smell sufficiently indicates.

That the putrid effluvium will mix with water seems to be evident from the following experiment. If a mouse be put into a jar full of water, standing with its mouth inverted in another vessel of water, a considerable quant.i.ty of elastic matter (and which may, therefore, be called _air_) will soon be generated, unless the weather be so cold as to check all putrefaction. After a short time, the water contracts an extremely fetid and offensive smell, which seems to indicate that the putrid effluvium pervades the water, and affects the neighbouring air; and since, after this, there is often no increase of the air, that seems to be the very substance which is carried off through the water, as fast as it is generated; and the offensive smell is a sufficient proof that it is not fixed air. For this has a very agreeable flavour, whether it be produced by fermentation, or extracted from chalk by oil of vitriol; affecting not only the mouth, but even the nostrils; with a pungency which is peculiarly pleasing to a certain degree, as any person may easily satisfy himself, who will chuse to make the experiment.

If the water in which the mouse was immersed, and which is saturated with the putrid air, be changed, the greater part of the putrid air, will, in a day or two, be absorbed, though the mouse continues to yield the putrid effluvium as before; for as soon as this fresh water becomes saturated with it, it begins to be offensive to the smell, and the quant.i.ty of the putrid air upon its surface increases as before. I kept a mouse producing putrid air in this manner for the s.p.a.ce of several months.

Six ounce measures of air not readily absorbed by water, appeared to have been generated from one mouse, which had been putrefying eleven days in confined air, before it was put into a jar which was quite filled with water, for the purpose of this observation.

Air thus generated from putrid mice standing in water, without any mixture of common air, extinguishes flame, and is noxious to animals, but not more so than common air only tainted with putrefaction. It is exceedingly difficult and tedious to collect a quant.i.ty of this putrid air, not miscible in water, so very great a proportion of what is collected being absorbed by the water in which it is kept; but what that proportion is, I have not endeavoured to ascertain. It is probably the same proportion that that part of fixed air, which is not readily absorbed by water, bears to the rest; and therefore this air, which I at first distinguished by the name of _the putrid effluvium_, is probably the same with fixed air, mixed with the phlogistic matter, which, in this and other processes, diminishes common air.

Though a quant.i.ty of common air be diminished by any substance putrefying in it, I have not yet found the same effect to be produced by a mixture of putrid air with common air; but, in the manner in which I have hitherto made the experiment, I was obliged to let the putrid air pa.s.s through a body of water, which might instantly absorb the phlogistic matter that diminished the common air.

Insects of various kinds live perfectly well in air tainted with animal or vegetable putrefaction, when a single inspiration of it would have instantly killed any other animal. I have frequently tried the experiment with flies and b.u.t.terflies. The _aphides_ also will thrive as well upon plants growing in this kind of air, as in the open air. I have even been frequently obliged to take plants out of the putrid air in which they were growing, on purpose to brush away the swarms of these insects which infected them; and yet so effectually did some of them conceal themselves, and so fast did they multiply, in these circ.u.mstances, that I could seldom keep the plants quite clear of them.

When air has been freshly and strongly tainted with putrefaction, so as to smell through the water, sprigs of mint have presently died, upon being put into it, their leaves turning black; but if they do not die presently, they thrive in a most surprizing manner. In no other circ.u.mstances have I ever seen vegetation so vigorous as in this kind of air, which is immediately fatal to animal life. Though these plants have been crouded in jars filled with this air, every leaf has been full of life; fresh shoots have branched out in various directions, and have grown much faster than other similar plants, growing in the same exposure in common air.

This observation led me to conclude, that plants, instead of affecting the air in the same manner with animal respiration, reverse the effects of breathing, and tend to keep the atmosphere sweet and wholesome, when it is become noxious, in consequence of animals either living and breathing, or dying and putrefying in it.

In order to ascertain this, I took a quant.i.ty of air, made thoroughly noxious, by mice breathing and dying in it, and divided it into two parts; one of which I put into a phial immersed in water; and to the other (which was contained in a gla.s.s jar, standing in water) I put a sprig of mint. This was about the beginning of August 1771, and after eight or nine days, I found that a mouse lived perfectly well in that part of the air, in which the sprig of mint had grown, but died the moment it was put into the other part of the same original quant.i.ty of air; and which I had kept in the very same exposure, but without any plant growing in it.

This experiment I have several times repeated; sometimes using air in which animals had breathed and died, and at other times using air, tainted with vegetable or animal putrefaction; and generally with the same success.

Once, I let a mouse live and die in a quant.i.ty of air which had been noxious, but which had been restored by this process, and it lived nearly as long as I conjectured it might have done in an equal quant.i.ty of fresh air; but this is so exceedingly various, that it is not easy to form any judgment from it; and in this case the symptom of _difficult respiration_ seemed to begin earlier than it would have done in common air.

Since the plants that I made use of manifestly grow and thrive in putrid air; since putrid matter is well known to afford proper nourishment for the roots of plants; and since it is likewise certain that they receive nourishment by their leaves as well as by their roots, it seems to be exceedingly probable, that the putrid effluvium is in some measure extracted from the air, by means of the leaves of plants, and therefore that they render the remainder more fit for respiration.

Towards the end of the year some experiments of this kind did not answer so well as they had done before, and I had instances of the relapsing of this restored air to its former noxious state. I therefore suspended my judgment concerning the efficacy of plants to restore this kind of noxious air, till I should have an opportunity of repeating my experiments, and giving more attention to them. Accordingly I resumed the experiments in the summer of the year 1772, when I presently had the most indisputable proof of the restoration of putrid air by vegetation; and as the fact is of some importance, and the subsequent variation in the state of this kind of air is a little remarkable, I think it necessary to relate some of the facts pretty circ.u.mstantially.

The air, on which I made the first experiments, was rendered exceedingly noxious by mice dying in it on the 20th of June. Into a jar nearly filled with one part of this air, I put a sprig of mint, while I kept another part of it in a phial, in the same exposure; and on the 27th of the same month, and not before, I made a trial of them, by introducing a mouse into a gla.s.s vessel, containing 2-1/2 ounce measures filled with each kind of air; and I noted the following facts.

When the vessel was filled with the air in which the mint had grown, a very large mouse lived five minutes in it, before it began to shew any sign of uneasiness. I then took it out, and found it to be as strong and vigorous as when it was first put in; whereas in that air which had been kept in the phial only, without a plant growing in it, a younger mouse continued not longer than two or three seconds, and was taken out quite dead. It never breathed after, and was immediately motionless. After half an hour, in which time the larger mouse (which I had kept alive, that the experiment might be made on both the kinds of air with the very same animal) would have been sufficiently recruited, supposing it to have received any injury by the former experiment, was put into the same vessel of air; but though it was withdrawn again, after being in it hardly one second, it was recovered with difficulty, not being able to stir from the place for near a minute. After two days, I put the same mouse into an equal quant.i.ty of common air, and observed that it continued seven minutes without any sign of uneasiness; and being very uneasy after three minutes longer, I took it out. Upon the whole, I concluded that the restored air wanted about one fourth of being as wholesome as common air. The same thing also appeared when I applied the test of nitrous air.

In the seven days, in which the mint was growing in this jar of noxious air, three old shoots had extended themselves about three inches, and several new ones had made their appearance in the same time. Dr.

Franklin and Sir John Pringle happened to be with me, when the plant had been three or four days in this state, and took notice of its vigorous vegetation, and remarkably healthy appearance in that confinement.

On the 30th of the same month, a mouse lived fourteen minutes, breathing naturally all the time, and without appearing to be much uneasy, till the last two minutes, in the vessel containing two ounce measures and a half of air which had been rendered noxious, by mice breathing in it almost a year before, and which, I had found to be most highly noxious on the 19th of this month, a plant having grown in it, but not exceedingly well, these eleven days; on which account I had deferred making the trial so long. The restored air was affected by a mixture of nitrous air, almost as much as common air.

As this putrid air was thus easily restored to a considerable degree of fitness for respiration, by plants growing in it, I was in hopes that by the same means it might in time be so much more perfectly restored, that a candle would burn in it; and for this purpose I kept plants growing in the jars which contained this air till the middle of August following, but did not take sufficient care to pull out all the old and rotten leaves. The plants, however, had grown, and looked so well upon the whole, that I had no doubt but that the air must constantly have been in a mending state; when I was exceedingly surprized to find, on the 24th of that month, that though the air in one of the jars had not grown worse, it was no better; and that the air in the other jar was so much worse than it had been, that a mouse would have died in it in a few seconds. It also made no effervescence with nitrous air, as it had done before.

Suspecting that the same plant might be capable of restoring putrid air to a certain degree only, or that plants might have a contrary tendency in some stages of their growth, I withdrew the old plant, and put a fresh one in its place; and found that, after seven days, the air was restored to its former wholesome state. This fact I consider as a very remarkable one, and well deserving of a farther investigation, as it may throw more light upon the principles of vegetation. It is not, however, a single fact; for I had several instances of the same kind in the preceding year; but it seemed so very extraordinary, that air should grow worse by the continuance of the same treatment by which it had grown better, that, whenever I observed it, I concluded that I had not taken sufficient care to satisfy myself of its previous restoration.

That plants are capable of perfectly restoring air injured by respiration, may, I think, be inferred with certainty from the perfect restoration, by this means, of air which had pa.s.sed through my lungs, so that a candle would burn in it again, though it had extinguished flame before, and apart of the same original quant.i.ty of air still continued to do so. Of this one instance occurred in the year 1771, a sprig of mint having grown in a jar of this kind of air, from the 25th of July to the 17th of August following; and another trial I made, with the same success, the 7th of July 1772, the plant having grown in it from the 29th of June preceding. In this case also I found that the effect was not owing to any virtue in the leaves of mint; for I kept them constantly changed in a quant.i.ty of this kind of air, for a considerable time, without making any sensible alteration in it.

These proofs of a partial restoration of air by plants in a state of vegetation, though in a confined and unnatural situation, cannot but render it highly probable, that the injury which is continually done to the atmosphere by the respiration of such a number of animals, and the putrefaction of such ma.s.ses of both vegetable and animal matter, is, in part at least, repaired by the vegetable creation. And, notwithstanding the prodigious ma.s.s of air that is corrupted daily by the above-mentioned causes; yet, if we consider the immense profusion of vegetables upon the face of the earth, growing in places, suited to their nature, and consequently at full liberty to exert all their powers, both inhaling and exhaling, it can hardly be thought, but that it may be a sufficient counterbalance to it, and that the remedy is adequate to the evil.

Dr. Franklin, who, as I have already observed, saw some of my plants in a very flourishing state, in highly noxious air, was pleased to express very great satisfaction with the result of the experiments. In his answer to the letter in which I informed him of it, he says,

"That the vegetable creation should restore the air which is spoiled by the animal part of it, looks like a rational system, and seems to be of a piece with the rest. Thus fire purifies water all the world over. It purifies it by distillation, when it raises it in vapours, and lets it fall in rain; and farther still by filtration, when, keeping it fluid, it suffers that rain to percolate the earth. We knew before that putrid animal substances were converted into sweet vegetables, when mixed with the earth, and applied as manure; and now, it seems, that the same putrid substances, mixed with the air, have a similar effect. The strong thriving state of your mint in putrid air seems to shew that the air is mended by taking something from it, and not by adding to it." He adds, "I hope this will give some check to the rage of destroying trees that grow near houses, which has accompanied our late improvements in gardening, from an opinion of their being unwholesome. I am certain, from long observation, that there is nothing unhealthy in the air of woods; for we Americans have every where our country habitations in the midst of woods, and no people on earth enjoy better health, or are more prolific."

Having rendered inflammable air perfectly innoxious by continued _agitation in a trough of water_, deprived of its air, I concluded that other kinds of noxious air might be restored by the same means; and I presently found that this was the case with putrid air, even of more than a year's standing. I shall observe once for all, that this process has never failed to restore any kind of noxious air on which I have tried it, viz. air injured by respiration or putrefaction, air infected with the fumes of burning charcoal, and of calcined metals, air in which a mixture of iron filings and brimstone, that in which paint made of white lead and oil has stood, or air which has been diminished by a mixture of nitrous air. Of the remarkable effect which this process has on nitrous air itself, an account will be given in its proper place.

If this process be made in water deprived of air, either by the air-pump, by boiling, or by distillation, or if fresh rain-water be used, the air will always be diminished by the agitation; and this is certainly the fairest method of making the experiment. If the water be fresh pump-water, there will always be an increase of the air by agitation, the air contained in the water being set loose, and joining that which is in the jar. In this case, also, the air has never failed to be restored; but then it might be suspected that the melioration was produced by the addition of some more wholesome ingredient. As these agitations were made in jars with wide mouths, and in a trough which had a large surface exposed to the common air, I take it for granted that the noxious effluvia, whatever they be, were first imbibed by the water, and thereby transmitted to the common atmosphere. In some cases this was sufficiently indicated by the disagreeable smell which attended the operation.

After I had made these experiments, I was informed that an ingenious physician and philosopher had kept a fowl alive twenty-four hours, in a quant.i.ty of air in which another fowl of the same size had not been able to live longer than an hour, by contriving to make the air, which it breathed, pa.s.s through no very large quant.i.ty of acidulated water, the surface of which was not exposed to the common air; and that even when the water was not acidulated, the fowl lived much longer than it could have done, if the air which it breathed had not been drawn through the water.

As I should not have concluded that this experiment would have succeeded so well, from any observations that I had made upon the subject, I took a quant.i.ty of air in which mice had died, and agitated it very strongly, first in about five times its own quant.i.ty of distilled water, in the manner in which I had impregnated water with fixed air; but though the operation was continued a long time, it made no sensible change in the properties of the air. I also repeated the operation with pump-water, but with as little effect. In this case, however, though the air was agitated in a phial, which had a narrow neck, the surface of the water in the bason was considerably large, and exposed to the common atmosphere, which must have tended a little to favour the experiment.

In order to judge more precisely of the effect of these different methods of agitating air, I transferred the very noxious air, which I had hot been able to amend in the least degree by the former method, into an open jar, standing in a trough of water; and when I had agitated it till it was diminished about one third, I found it to be better than air in which candles had burned out, as appeared by the test of the nitrous air; and a mouse lived in 2-1/2 ounce measures of it a quarter of an hour, and was not sensibly affected the first ten or twelve minutes.

In order to determine whether the addition of any _acid_ to the water, would make it more capable of restoring putrid air, I agitated a quant.i.ty of it in a phial containing very strong vinegar; and after that in _aqua fortis_, only half diluted with water; but by neither of these processes was the air at all mended, though the agitation was repeated, at intervals, during a whole day, and it was moreover allowed to stand in that situation all night.

Since, however, water in these experiments must have imbibed and retained a certain portion of the noxious effluvia, before they could be transmitted to the external air, I do not think it improbable but that the agitation of the sea and large lakes may be of some use for the purification of the atmosphere, and the putrid matter contained in water may be imbibed by aquatic plants, or be deposited in some other manner.

Having found, by several experiments above-mentioned that the proper putrid effluvium is something quite distinct from fixed air, and finding, by the experiments of Dr. Macbride, that fixed air corrects putrefaction; it occured to me, that fixed air, and air tainted with putrefaction, though equally, noxious when separate, might make a wholesome mixture, the one, correcting the other; and I was confirmed in this opinion by, I believe, not less than fifty or sixty instances, in which air, that had been made in the highest degree noxious, by respiration or putrefaction, was so far sweetened, by a mixture of about four times as much fixed air, that afterwards mice lived in it exceedingly well, and in some cases almost as long as in common air. I found it, indeed, to be more difficult to restore _old_ putrid air by this means; but I hardly ever failed to do it, when the two kinds of air had stood a long time together; by which I mean about a fortnight or three weeks.

The reason why I do not absolutely conclude that the restoration of air in these cases was the effect of fixed air, is that, when I made a trial of the mixture, I sometimes agitated the two kinds of air pretty strongly together, in a trough of water, or at least pa.s.sed it several times through water, from one jar to another, that the superfluous fixed air might be absorbed, not suspecting at that time that the agitation could have any other effect. But having since found that very violent, and especially long-continued agitation in water, without any mixture of fixed air, never failed to render any kind of noxious air in some measure fit for respiration (and in one particular instance the mere transferring of the air from one vessel to another through the water, though for a much longer time than I ever used for the mixtures of air, was of considerable use for the same purpose) I began to entertain some doubt of the efficacy of fixed air in this case. In some cases also the mixture of fixed air had by no means so much effect on the putrid air as, from the generality of my observations, I should have expected.

I was always aware, indeed, that it might be said, that, the residuum of fixed air not being very noxious, such an addition must contribute to mend the putrid air; but, in order to obviate this objection, I once mixed the residuum of as much fixed air as I had found, by a variety of trials, to be sufficient to restore a given quant.i.ty of putrid air, with an equal quant.i.ty of that air, without making any sensible melioration of it.

Upon the whole, I am inclined to think that this process could hardly have succeeded so well as it did with me, and in so great a number of trials, unless fixed air have some tendency to correct air tainted with respiration or putrefaction; and it is perfectly agreeable to the a.n.a.logy of Dr. Macbride's discoveries, and may naturally be expected from them, that it should have such an effect.

By a mixture of fixed air I have made wholesome the residuum of air generated by putrefaction only, from mice plunged in water. This, one would imagine, _a priori_, to be the most noxious of all kinds of air.

For if common air only tainted with putrefaction be so deadly, much more might one expect that air to be so, which was generated from putrefaction only; but it seems to be nothing more than common air (or at least that kind of fixed air which is not absorbed by water) tainted with putrefaction, and therefore requires no other process to sweeten it. In this case, however, we seem to have an instance of the generation of genuine common air, though mixed with something that is foreign to it. Perhaps the residuum of fixed air may be another instance of the same nature, and also the residuum of inflammable air, and of nitrous air, especially nitrous air loaded with phlogiston, after long agitation in water.

Fixed air is equally diffused through the whole ma.s.s of any quant.i.ty of putrid air with which it is mixed: for dividing the mixture into two equal parts, they were reduced in the same proportion by pa.s.sing through water. But this is also the case with some of the kinds of air which will not incorporate, as inflammable air, and air in which brimstone has burned.

If fixed air tend to correct air which has been injured by animal respiration or putrefaction, _lime kilns_, which discharge great quant.i.ties of fixed air, may be wholesome in the neighbourhood of populous cities, the atmosphere of which must abound with putrid effluvia. I should think also that physicians might avail themselves of the application of fixed air in many putrid disorders, especially as it may be so easily administered by way of _clyster_, where it would often find its way to much of the putrid matter. Nothing is to be apprehended from the distention of the bowels by this kind of air, since it is so readily absorbed by any fluid or moist substance.

Since fixed air is not noxious _per se_, but, like fire, only in excess, I do not think it at all hazardous to attempt to _breathe_ it. It is however easily conveyed into the _stomach_, in natural or artificial Pyrmont water, in briskly-fermenting liquors, or a vegetable diet. It is even possible, that a considerable quant.i.ty of fixed air might be imbibed by the absorbing vessels of the skin, if the whole body, except the head, should be suspended over a vessel of strongly-fermenting liquor; and in some putrid disorders this treatment might be very salutary. If the body was exposed quite naked, there would be very little danger from the cold in this situation, and the air having freer access to the skin might produce a greater effect. Being no physician, I run no risk by throwing out these random, and perhaps whimsical proposals.[5]

Having communicated my observations on fixed air, and especially my scheme of applying it by way of _clyster_ in putrid disorders, to Mr.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Ms. Doctor Divine

Ms. Doctor Divine

Ms. Doctor Divine Chapter 2262: Getting 4 Author(s) : 9000 Dreams View : 1,427,202

Experiments and Observations on Different Kinds of Air Part 5 summary

You're reading Experiments and Observations on Different Kinds of Air. This manga has been translated by Updating. Author(s): Joseph Priestley. Already has 571 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

NovelOnlineFull.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to NovelOnlineFull.com