Earth and Sky Every Child Should Know - novelonlinefull.com
You’re read light novel Earth and Sky Every Child Should Know Part 2 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
The shrinking of the earth's crust had crumpled into folds of the utmost complexity those horizontal layers of lava rock poured out on the ocean floor. Next, the same forces attacked the thick rock layers formed out of sediment--the aqueous or water-formed sandstones and clays.
The core of the globe contracts, and the force that crumples the crust to fit the core generates heat. The alkaline water in the rocks joins with the heat produced by the crumpling and crushing forces, acting downward, and from the sides, to transform pure sandstone into gla.s.sy quartzite, and clay into slate. In other words, water-formed rocks are baked until they become fire-formed rocks. They are what the geologist calls _metamorphic_, which means _changed_.
In many mountainous regions there are breaks through the strata of sandstone and slates and limestones, through which streams of lava have poured forth from the heated interior. Along the sides of these fissures the hot lava has changed all the rocks it touched. The heat of the volcanic rock matter has melted the silica in the sand, which has hardened again into a crystalline substance like gla.s.s.
Have you ever visited a brick-yard? Here men are sifting clay dug out of a pit or the side of a hill, adding sand from a sand-bank, and in a big mixing box, stirring these two "dry ingredients" with water into a thick paste. This dough is moulded into bricks, sun-dried, and then baked in kilns themselves built of bricks. At the end of the baking, the soft, doughy clay block is transformed into a hard, gla.s.sy, or dull brick.
From aqueous rock materials, fire has produced a metamorphic rock.
Volcanic action is imitated in this common, simple process of brickmaking.
Milwaukee brick is made of clay that has no iron in it. For this reason the bricks are yellow after baking. Most bricks are red, on account of the iron in the clay, which is converted into a red oxide, or rust, by water and heat.
Common flower pots and the tiles used in draining wet land are not glazed, as hard-burned bricks are. The baking of these clay things is done with much less heat. They are left somewhat porous. But the tiles of roofs are baked harder, and get a surface glaze by the melting of the gla.s.sy particles of the sand.
As bricks vary in colour and quality according to the materials that compose them, so the metamorphic rocks differ. The white sand one sees on many beaches is largely quartz. This is the substance of pure, white sandstone. Metamorphism melts the silica into a gla.s.sy liquid cement; the particles are bound close together on cooling. The rock becomes a white, granular quartzite, that looks like loaf sugar. If banded, it is called gneiss. Such rocks take a fine polish.
Pure limestone is also white and granular. When metamorphosed by heat, it becomes white marble. The gla.s.sy cement that holds the particles of lime carbonate shows as the glaze of the polished surface. It is silica.
One sees the same mineral on the face of polished granite.
Clays are rarely pure. Kaolin is a white clay which, when baked, becomes porcelain. China-ware is artificially metamorphosed kaolin. In the early rocks the clay beds were transformed by heat into jasper and slates. In beds where clay mingled with sand, in layers, gneiss was formed. If mica is a prominent element, the metamorphic rock is easily parted into overlapping, scaly layers. It is a mica schist. If hornblende is the most abundant mineral, the same scaly structure shows in a dark rock called hornblende schist, rich in iron. A schist containing much magnesia is called serpentine.
The bricks of the wall, the tiles on the roof, the flower pots on the window sill, and the dishes on the breakfast table, are examples of metamorphic rocks made by man's skill, by the use of fire and water acting on sand and clay. Pottery has preserved the record of civilization, from the making of the first crude utensils by cave men to the finest expression of decorative art in gla.s.s and porcelain.
The choicest material of the builder and the sculptor is limestone baked by the fires under the earth's crust into marble. The most enduring of all the rocks are the foundation granite, and the metamorphic rocks that lie next to them. Over these lie thick layers of sedimentary rocks laid down by water. In them the record of life on the earth is written in fossils.
THE AIR IN MOTION
Most of the beautiful things that surround us and make our lives full of happiness appeal to one or more of our five senses. The green trees we can see, the bird songs we hear, the perfume of honey-laden flowers we smell, the velvety smoothness of a peach we feel, and its rich pulp we taste. But over all and through all the things we see and feel and hear and taste and smell, is the life-giving air, that lies like a blanket, miles in depth, upon the earth. The substance which makes the life of plants and animals possible is, when motionless, an invisible, tasteless, odourless substance, which makes no sound and is not perceptible to the touch.
Air fills the porous substance of the earth's crust for a considerable distance, and even the water has so much air in it that fishes are able to breathe without coming to the surface. It is not a simple element, like gold, or carbon, or calcium, but is made up of several elements, chief among which are nitrogen and oxygen. Four-fifths of its bulk is nitrogen and one-fifth oxygen. There is present in air more or less of watery vapour and of carbon dioxide, the gas which results from the burning or decay of any substance. Although no more than one per cent.
of the air that surrounds us is water, yet this is a most important element. It forms the clouds that bear water back from the ocean and scatter it in rain upon the thirsty land. Solid matter in the form of dust, and soot from chimneys, acc.u.mulates in the clouds and does a good work in condensing the moisture and causing it to fall.
It is believed that the air reaches to a height of one hundred to two hundred miles above the earth's surface. If a globe six feet in diameter were furnished with an atmosphere proportionately as deep as ours, it would be about an inch in depth. At the level of the sea the air reaches its greatest density. Two miles above sea-level it is only two-thirds as dense. On the tops of high mountains, four or five miles above sea level, the air is so rarefied as to cause the blood to start from the nostrils and eyelids of explorers. The walls of the little blood-vessels are broken by the expansion of the air that is inside. At the sea-level air presses at the rate of fifteen pounds per square foot in all directions. As one ascends to higher levels, the air pressure becomes less and less.
The barometer is the instrument by which the pressure of air is measured. A gla.s.s tube, closed at one end, and filled with mercury, the liquid metal often called quicksilver, is inverted in a cup of the same metal, and so supported that the metal is free to flow between the two vessels. The pressure of air on the surface of the mercury in the cup is sufficient at the sea-level to sustain a column of mercury thirty inches high in the tube. As the instrument is carried up the side of a mountain the mercury falls in the tube. This is because the air pressure decreases the higher up we go. If we should descend into the shaft of the deepest mine that reaches below the sea level, the column of air supported by the mercury in the cup would be a mile higher, and for this reason its weight would be correspondingly greater. The mercury would thus be forced higher in the tube than the thirty-inch mark, which indicates sea-level.
Another form of barometer often seen is a tube, the lower and open end of which forms a U-shaped curve. In this open end the downward pressure of the air rests upon the mercury and holds it up in the closed end, forcing it higher as the instrument is carried to loftier alt.i.tudes. At sea level a change of 900 feet in alt.i.tude makes a change of an inch in the height of the mercury in the column. The gla.s.s tube is marked with the fractions of inches, or of the metre if the metric system of measurements is used.
It is a peculiarity of air to become heated when it is compressed, and cooled when it is allowed to expand again. It is also true that when the sun rises, the atmosphere is warmed by its rays. This is why the hottest part of the day is near noon when the sun's rays fall vertically. The earth absorbs a great deal of the sun's heat in the daytime and through the summer season. When it cools this heat is given off, thus warming the surrounding atmosphere. In the polar regions, north and south, the air is far below freezing point the year round. In the region of the Equator it rarely falls below 90 degrees, a temperature which we find very uncomfortable, especially when there is a good deal of moisture in the air.
If we climb a mountain in Mexico, we leave the sultry valley, where the heat is almost unbearable, and very soon notice a change. For every three hundred feet of alt.i.tude we gain there is a fall of one degree in the temperature. Before we are half way up the slope we have left behind the tropical vegetation, and come into a temperate zone, where the plants are entirely different from those in the lower valley. As we climb, the vegetation becomes stunted, and the thermometer drops still lower. At last we come to the region of perpetual snow, where the climate is like that of the frozen north.
So we see that the air becomes gradually colder as we go north or south from the Equator, and the same change is met as we rise higher and higher from the level of the sea.
It is only when air is in motion that we can feel and hear it, and there are very few moments of the day, and days of the year, when there is not a breeze. On a still day fanning sets the air in motion, and creates a miniature breeze, the sound of which we hear in the swishing of the fan.
The great blanket of air that covers the earth is in a state of almost constant disturbance, because of the lightness of warm air and the heaviness of cold air. These two different bodies are constantly changing places. For instance, the heated air at the Equator is constantly being crowded upward by cold air which settles to the level of the earth. Cold streams of air flow to the Tropics from north and south of the Equator, and push upward the air heated by the sun.
This constant inrush of air from north and south forms a double belt of constant winds. If the earth stood still, no doubt the direction would be due north and due south for these winds; but the earth rotates rapidly from west to east upon its axis, carrying with it everything that is securely fastened to the surface: the trees, the houses, etc.
But the air is not a part of the earth, not even so much as the seas, the waters of which must stay in their proper basins, and be whirled around with other fixed objects. The earth whirls so rapidly that the winds from north and south of the Equator lag behind, and thus take a constantly diagonal direction. Instead of due south the northern belt of cold air drifts south-west and the southern belt drifts northwest. These are called the Trade Winds. Near the Equator they are practically east winds.
The belt of trade winds is about fifty degrees wide. It swings northward in our summer and southward in our winter, its centre following the vertical position of the sun. Near the centre of the course which marks the meeting of the northern with the southern winds is a "Belt of Calms" where the air draws upward in a strong draught. The colder air of the trade winds is pushing up the columns of light, heated air. This strip is known by sailors as "the Doldrums," or "the region of equatorial calms." Though never wider than two or three hundred miles, this is a region dreaded by captains of sailing-vessels, for they often lie becalmed for weeks in an effort to reach the friendly trade winds that help them to their desired ports. Vessels becalmed are at the mercy of sudden tempests which come suddenly like thunder-storms, and sometimes do great damage to vessels because they take the sailors unawares and allow no time to shorten sail.
Until late years the routes of vessels were charted so that sailors could take advantage of the trade winds in their long voyages. It was necessary in the days of sailing-vessels for the captain to understand the movements of winds which furnished the motive power that carried his vessel. Fortunate it was for him that there were steady winds in the temperate zones that he could take advantage of in lat.i.tudes north of the Tropic of Cancer and south of the Tropic of Capricorn. What becomes of the hot air that rises in a constant stream above the "Doldrums,"
pushed up by the cooler trade winds that blow in from north and south?
Naturally this air cannot ascend very high, for it soon reaches an alt.i.tude in which its heat is rapidly lost, and it would sink if it were not constantly being pushed by the rising column of warm air under it. So it turns and flows north and south at a level above the trade winds. Not far north of the Tropic of Cancer it sinks to the level of sea and land, and forms a belt of winds that blows ships in a northeasterly direction. Between trades and anti-trades is another zone of calms,--near the Tropics of Cancer and of Capricorn.
The land ma.s.ses of the continents with their high mountain ranges interfere with these winds, especially in the northern hemisphere, but in the Southern Pacific and on the opposite side of the globe the "Roaring Forties," as these prevailing westerly winds are known by the sailors, have an almost unbroken waste of seas over which they blow. In the long voyages between England and Australia, and in the Indian trade, the ships of England set their sails to catch the roaring forties both going and coming. They accomplish this by sailing past the Cape of Good Hope on the outward voyage and coming home by way of Cape Horn, thus circling the globe with every trip. In the North Atlantic, traffic is now mostly carried on in vessels driven by engines, not by sails. Yet the westerly winds that blow from the West Indies diagonally across the Atlantic are still useful to all sailing craft that are making for British ports.
From the north and from the south cold air flows down into the regions of warmer climate. These polar winds are not so important to sea commerce, but they do a great work in tempering the heat in the equatorial regions. We cannot know how much our summers are tempered by the cool breath of winds that blow over polar ice-fields. And the cold regions of the earth, in their brief summer, enjoy the benefits of the warm breezes that flow north and south from the heated equatorial regions.
The land, north and south, is made habitable by the clouds. They gather their burdens of vapour from the warm seas, the wind drifts them north and south, where they let it fall in rains that make and keep the earth green and beautiful. From the clouds the earth gathers, like a great sponge, the water that stores the springs and feeds rivers and lakes.
How necessary are the winds that transport the cloud ma.s.ses!
The air is the breath of life to all living things on our planet. Mars is one of the sun's family so provided. Plants or animals could probably live on the planet Mars. Do we think often enough of this invisible, life-giving element upon which we depend so constantly?
The open air which the wind purifies by keeping it in motion is the best place in which to work, to play, and to sleep, when work and play are done and we rest until another day comes. Indoors we need all the air we can coax to come in through windows and doors. Fresh air purifies air that is stale and unwholesome from being shut up. n.o.body is afraid, nowadays, to breathe night air! What a foolish notion it was that led people to close their bedroom windows at night. Clean air, in plenty, day and night, we need. Air and sunshine are the two best gifts of G.o.d.
THE WORK OF THE WIND
When the March wind comes bl.u.s.tering down the street, rudely dashing a cloud of dust in our faces, we are uncomfortable and out of patience. We duck our heads and cover our faces, but even then we are likely to get a cinder in one eye, to swallow germs by the dozens, and to get a gray coating of plain, harmless dust. We welcome the rain that lays the dust, or its feeble imitation, the water sprinkler, that brings us temporary relief.
On the quietest day, even after a thorough sweeping and dusting of the library, you are able to write your name plainly on the film of dust that lies on the polished table. Take a book from the open shelves, and blow into the trough of its top. This is always dusty. Where does the dust come from? This is the house-keeper's riddle.
The answer is not a hard one. I look out of my window on a street which is famous as the road Washington took on his retreat from White Plains to Trenton. It has always been the main thoroughfare between New York and Philadelphia, and now is the route that automobiles follow. A constant procession of vehicles pa.s.ses my house, and to-day each one approaches in a cloud of dust. The air is gray with suspended particles of dirt. The wind carries the successive clouds, and they roll up against the houses like breakers on the beach. Windows and doors are loose enough to let dust sift in. When a door opens, the cloud enters and lights on rugs and carpets and curtains. Any ledge collects its share of dust. The beating of carpets and rugs disturbs the acc.u.mulated dust of many months.
[Ill.u.s.tration: In this lonely Arizona desert the wind drifts the sand into dunes, just as it does on the toe of Cape Cod]
[Ill.u.s.tration: The Grand Canyon of the Colorado shows on a magnificent scale the work of water in cutting away rock walls]
The wind sweeps the ploughed field, and takes all the dust it can carry.
It blows the finest top soil from our gardens into the street. It blows soil from other fields and gardens into ours, so the level of our land is not noticeably lowered. The wind strips the high land and drops its burden on lower levels. This is one of the big jobs the water has to do, and the wind is a valuable helper. To tear down the mountains and fill in the valleys is the great work of the two partners, wind and water.
Dead, still air holds the finest dust, without letting it fall. The buoyancy of the particles overcomes their weight. We see them in a sunbeam, like shining points of precious metal, and watch them. A light breeze picks up bits of soil and litter, from the smallest up to a certain size and weight. If the velocity of the wind increases, its carrying power increases. It is able to carry bits that are larger and heavier. The following table is exact and interesting:
_Velocity_ _Pressure_ _in Miles_ _in Pounds_ _per Hour_ _per Sq. Ft._
Light breeze 14 1 Strong breeze 42 9 Strong gale 70 25 Hurricane 84 36
The terrible paths of hurricanes are seen in forest countries. The trees are uprooted, as if a great roller had crushed them, throwing the tops all in one direction, and leaving the roots uncovered, and a sunken pocket where each tree stood. On a steep, rocky slope, the uprooting of scattered trees often loosens tons of rock, and sends the ma.s.s thundering down the mountain-side. Much more destruction may be accomplished by one brief tornado than by years of wear by ordinary breezes.
The wind does much to help the waves in their patient beating on rocky sh.o.r.es. If the wind blows from the ocean and the tide is landward, the two forces combine, and the loose rocks are thrown against the solid beach with astonishing force. Even the gravel and the sharp sand are tools of great usefulness to the waves in grinding down the resisting sh.o.r.e. Up and back they are swept by the water, and going and coming they have their chance to scratch or strike a blow. Boulders on the beach become pockmarked by the constant sand-blast that plays upon them.