A System of Logic: Ratiocinative and Inductive - novelonlinefull.com
You’re read light novel A System of Logic: Ratiocinative and Inductive Volume I Part 9 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
Take, for instance, any of the definitions laid down as premises in Euclid's Elements; the definition, let us say, of a circle. This, being a.n.a.lysed, consists of two propositions; the one an a.s.sumption with respect to a matter of fact, the other a genuine definition. "A figure may exist, having all the points in the line which bounds it equally distant from a single point within it:" "Any figure possessing this property is called a circle." Let us look at one of the demonstrations which are said to depend on this definition, and observe to which of the two propositions contained in it the demonstration really appeals.
"About the centre A, describe the circle B C D." Here is an a.s.sumption that a figure, such as the definition expresses, _may_ be described; which is no other than the postulate, or covert a.s.sumption, involved in the so-called definition. But whether that figure be called a circle or not is quite immaterial. The purpose would be as well answered, in all respects except brevity, were we to say, "Through the point B, draw a line returning into itself, of which every point shall be at an equal distance from the point A." By this the definition of a circle would be got rid of, and rendered needless; but not the postulate implied in it; without that the demonstration could not stand. The circle being now described, let us proceed to the consequence. "Since B C D is a circle, the radius B A is equal to the radius C A." B A is equal to C A, not because B C D is a circle, but because B C D is a figure with the radii equal. Our warrant for a.s.suming that such a figure about the centre A, with the radius B A, may be made to exist, is the postulate. Whether the admissibility of these postulates rests on intuition, or on proof, may be a matter of dispute; but in either case they are the premises on which the theorems depend; and while these are retained it would make no difference in the certainty of geometrical truths, though every definition in Euclid, and every technical term therein defined, were laid aside.
It is, perhaps, superfluous to dwell at so much length on what is so nearly self-evident; but when a distinction, obvious as it may appear, has been confounded, and by powerful intellects, it is better to say too much than too little for the purpose of rendering such mistakes impossible in future. I will, therefore, detain the reader while I point out one of the absurd consequences flowing from the supposition that definitions, as such, are the premises in any of our reasonings, except such as relate to words only. If this supposition were true, we might argue correctly from true premises, and arrive at a false conclusion. We should only have to a.s.sume as a premise the definition of a nonent.i.ty; or rather of a name which has no ent.i.ty corresponding to it. Let this, for instance, be our definition:
A dragon is a serpent breathing flame.
This proposition, considered only as a definition, is indisputably correct. A dragon _is_ a serpent breathing flame: the word _means_ that.
The tacit a.s.sumption, indeed, (if there were any such understood a.s.sertion), of the existence of an object with properties corresponding to the definition, would, in the present instance, be false. Out of this definition we may carve the premises of the following syllogism:
A dragon is a thing which breathes flame: A dragon is a serpent:
From which the conclusion is,
Therefore some serpent or serpents breathe flame:--
an unexceptionable syllogism in the first mode of the third figure, in which both premises are true and yet the conclusion false; which every logician knows to be an absurdity. The conclusion being false and the syllogism correct, the premises cannot be true. But the premises, considered as parts of a definition, are true. Therefore, the premises considered as parts of a definition cannot be the real ones. The real premises must be--
A dragon is a _really existing_ thing which breathes flame: A dragon is a _really existing_ serpent:
which implied premises being false, the falsity of the conclusion presents no absurdity.
If we would determine what conclusion follows from the same ostensible premises when the tacit a.s.sumption of real existence is left out, let us, according to the recommendation in a previous page, subst.i.tute _means_ for _is_. We then have--
Dragon is _a word meaning_ a thing which breathes flame: Dragon is _a word meaning_ a serpent:
From which the conclusion is,
Some _word or words which mean_ a serpent, also mean a thing which breathes flame:
where the conclusion (as well as the premises) is true, and is the only kind of conclusion which can ever follow from a definition, namely, a proposition relating to the meaning of words.
There is still another shape into which we may transform this syllogism.
We may suppose the middle term to be the designation neither of a thing nor of a name, but of an idea. We then have--
The _idea of_ a dragon is _an idea of_ a thing which breathes flame: The _idea of_ a dragon is _an idea of_ a serpent: Therefore, there is _an idea of_ a serpent, which is _an idea of_ a thing breathing flame.
Here the conclusion is true, and also the premises; but the premises are not definitions. They are propositions affirming that an idea existing in the mind, includes certain ideal elements. The truth of the conclusion follows from the existence of the psychological phenomenon called the idea of a dragon; and therefore still from the tacit a.s.sumption of a matter of fact.[28]
When, as in this last syllogism, the conclusion is a proposition respecting an idea, the a.s.sumption on which it depends may be merely that of the existence of an idea. But when the conclusion is a proposition concerning a Thing, the postulate involved in the definition which stands as the apparent premise, is the existence of a thing conformable to the definition, and not merely of an idea conformable to it. This a.s.sumption of real existence will always convey the impression that we intend to make, when we profess to define any name which is already known to be a name of really existing objects. On this account it is, that the a.s.sumption was not necessarily implied in the definition of a dragon, while there was no doubt of its being included in the definition of a circle.
6. One of the circ.u.mstances which have contributed to keep up the notion, that demonstrative truths follow from definitions rather than from the postulates implied in those definitions, is, that the postulates, even in those sciences which are considered to surpa.s.s all others in demonstrative certainty, are not always exactly true. It is not true that a circle exists, or can be described, which has all its radii _exactly_ equal. Such accuracy is ideal only; it is not found in nature, still less can it be realized by art. People had a difficulty, therefore, in conceiving that the most certain of all conclusions could rest on premises which, instead of being certainly true, are certainly not true to the full extent a.s.serted. This apparent paradox will be examined when we come to treat of Demonstration; where we shall be able to show that as much of the postulate is true, as is required to support as much as is true of the conclusion. Philosophers, however, to whom this view had not occurred, or whom it did not satisfy, have thought it indispensable that there should be found in definitions something _more_ certain, or at least more accurately true, than the implied postulate of the real existence of a corresponding object. And this something they flattered themselves they had found, when they laid it down that a definition is a statement and a.n.a.lysis not of the mere meaning of a word, nor yet of the nature of a thing, but of an idea. Thus, the proposition, "A circle is a plane figure bounded by a line all the points of which are at an equal distance from a given point within it,"
was considered by them, not as an a.s.sertion that any real circle has that property, (which would not be exactly true,) but that we _conceive_ a circle as having it; that our abstract idea of a circle is an idea of a figure with its radii exactly equal.
Conformably to this it is said, that the subject-matter of mathematics, and of every other demonstrative science, is not things as they really exist, but abstractions of the mind. A geometrical line is a line without breadth; but no such line exists in nature; it is a notion merely suggested to the mind by its experience of nature. The definition (it is said) is a definition of this mental line, not of any actual line: and it is only of the mental line, not of any line existing in nature, that the theorems of geometry are accurately true.
Allowing this doctrine respecting the nature of demonstrative truth to be correct (which, in a subsequent place, I shall endeavour to prove that it is not;) even on that supposition, the conclusions which seem to follow from a definition, do not follow from the definition as such, but from an implied postulate. Even if it be true that there is no object in nature answering to the definition of a line, and that the geometrical properties of lines are not true of any lines in nature, but only of the idea of a line; the definition, at all events, postulates the real existence of such an idea: it a.s.sumes that the mind can frame, or rather has framed, the notion of length without breadth, and without any other sensible property whatever. To me, indeed, it appears that the mind cannot form any such notion; it cannot conceive length without breadth; it can only, in contemplating objects, attend to their length, exclusively of their other sensible qualities, and so determine what properties may be predicated of them in virtue of their length alone. If this be true, the postulate involved in the geometrical definition of a line, is the real existence, not of length without breadth, but merely of length, that is, of long objects. This is quite enough to support all the truths of geometry, since every property of a geometrical line is really a property of all physical objects in so far as possessing length. But even what I hold to be the false doctrine on the subject, leaves the conclusion that our reasonings are grounded on the matters of fact postulated in definitions, and not on the definitions themselves, entirely unaffected; and accordingly this conclusion is one which I have in common with Dr. Whewell, in his _Philosophy of the Inductive Sciences_: though, on the nature of demonstrative truth, Dr. Whewell's opinions are greatly at variance with mine. And here, as in many other instances, I gladly acknowledge that his writings are eminently serviceable in clearing from confusion the initial steps in the a.n.a.lysis of the mental processes, even where his views respecting the ultimate a.n.a.lysis are such as (though with unfeigned respect) I cannot but regard as fundamentally erroneous.
7. Although, according to the opinion here presented, Definitions are properly of names only, and not of things, it does not follow from this that definitions are arbitrary. How to define a name, may not only be an inquiry of considerable difficulty and intricacy, but may involve considerations going deep into the nature of the things which are denoted by the name. Such, for instance, are the inquiries which form the subjects of the most important of Plato's Dialogues; as, "What is rhetoric?" the topic of the Gorgias, or "What is justice?" that of the Republic. Such, also, is the question scornfully asked by Pilate, "What is truth?" and the fundamental question with speculative moralists in all ages, "What is virtue?"
It would be a mistake to represent these difficult and n.o.ble inquiries as having nothing in view beyond ascertaining the conventional meaning of a name. They are inquiries not so much to determine what is, as what should be, the meaning of a name; which, like other practical questions of terminology, requires for its solution that we should enter, and sometimes enter very deeply, into the properties not merely of names but of the things named.
Although the meaning of every concrete general name resides in the attributes which it connotes, the objects were named before the attributes; as appears from the fact that in all languages, abstract names are mostly compounds or other derivatives of the concrete names which correspond to them. Connotative names, therefore, were, after proper names, the first which were used: and in the simpler cases, no doubt, a distinct connotation was present to the minds of those who first used the name, and was distinctly intended by them to be conveyed by it. The first person who used the word white, as applied to snow or to any other object, knew, no doubt, very well what quality he intended to predicate, and had a perfectly distinct conception in his mind of the attribute signified by the name.
But where the resemblances and differences on which our cla.s.sifications are founded are not of this palpable and easily determinable kind; especially where they consist not in any one quality but in a number of qualities, the effects of which being blended together are not very easily discriminated, and referred each to its true source; it often happens that names are applied to nameable objects, with no distinct connotation present to the minds of those who apply them. They are only influenced by a general resemblance between the new object and all or some of the old familiar objects which they have been accustomed to call by that name. This, as we have seen, is the law which even the mind of the philosopher must follow, in giving names to the simple elementary feelings of our nature: but, where the things to be named are complex wholes, a philosopher is not content with noticing a general resemblance; he examines what the resemblance consists in: and he only gives the same name to things which resemble one another in the same definite particulars. The philosopher, therefore, habitually employs his general names with a definite connotation. But language was not made, and can only in some small degree be mended, by philosophers. In the minds of the real arbiters of language, general names, especially where the cla.s.ses they denote cannot be brought before the tribunal of the outward senses to be identified and discriminated, connote little more than a vague gross resemblance to the things which they were earliest, or have been most, accustomed to call by those names. When, for instance, ordinary persons predicate the words _just_ or _unjust_ of any action, _n.o.ble_ or _mean_ of any sentiment, expression, or demeanour, _statesman_ or _charlatan_ of any personage figuring in politics, do they mean to affirm of those various subjects any determinate attributes, of whatever kind? No: they merely recognise, as they think, some likeness, more or less vague and loose, between these and some other things which they have been accustomed to denominate or to hear denominated by those appellations.
Language, as Sir James Mackintosh used to say of governments, "is not made, but grows." A name is not imposed at once and by previous purpose upon a _cla.s.s_ of objects, but is first applied to one thing, and then extended by a series of transitions to another and another. By this process (as has been remarked by several writers, and ill.u.s.trated with great force and clearness by Dugald Stewart in his Philosophical Essays) a name not unfrequently pa.s.ses by successive links of resemblance from one object to another, until it becomes applied to things having nothing in common with the first things to which the name was given; which, however, do not, for that reason, drop the name; so that it at last denotes a confused huddle of objects, having nothing whatever in common; and connotes nothing, not even a vague and general resemblance. When a name has fallen into this state, in which by predicating it of any object we a.s.sert literally nothing about the object, it has become unfit for the purposes either of thought or of the communication of thought; and can only be made serviceable by stripping it of some part of its multifarious denotation, and confining it to objects possessed of some attributes in common, which it may be made to connote. Such are the inconveniences of a language which "is not made, but grows." Like the governments which are in a similar case, it may be compared to a road which is not made but has made itself: it requires continual mending in order to be pa.s.sable.
From this it is already evident, why the question respecting the definition of an abstract name is often one of so much difficulty. The question, What is justice? is, in other words, What is the attribute which mankind mean to predicate when they call an action just? To which the first answer is, that having come to no precise agreement on the point, they do not mean to predicate distinctly any attribute at all.
Nevertheless, all believe that there is some common attribute belonging to all the actions which they are in the habit of calling just. The question then must be, whether there is any such common attribute? and, in the first place, whether mankind agree sufficiently with one another as to the particular actions which they do or do not call just, to render the inquiry, what quality those actions have in common, a possible one: if so, whether the actions really have any quality in common; and if they have, what it is. Of these three, the first alone is an inquiry into usage and convention; the other two are inquiries into matters of fact. And if the second question (whether the actions form a cla.s.s at all) has been answered negatively, there remains a fourth, often more arduous than all the rest, namely, how best to form a cla.s.s artificially, which the name may denote.
And here it is fitting to remark, that the study of the spontaneous growth of languages is of the utmost importance to those who would logically remodel them. The cla.s.sifications rudely made by established language, when retouched, as they almost all require to be, by the hands of the logician, are often in themselves excellently suited to his purposes. As compared with the cla.s.sifications of a philosopher, they are like the customary law of a country, which has grown up as it were spontaneously, compared with laws methodized and digested into a code: the former are a far less perfect instrument than the latter; but being the result of a long, though unscientific, course of experience, they contain a ma.s.s of materials which may be made very usefully available in the formation of the systematic body of written law. In like manner, the established grouping of objects under a common name, even when founded only on a gross and general resemblance, is evidence, in the first place, that the resemblance is obvious, and therefore considerable; and, in the next place, that it is a resemblance which has struck great numbers of persons during a series of years and ages. Even when a name, by successive extensions, has come to be applied to things among which there does not exist this gross resemblance common to them all, still at every step in its progress we shall find such a resemblance. And these transitions of the meaning of words are often an index to real connexions between the things denoted by them, which might otherwise escape the notice of thinkers; of those at least who, from using a different language, or from any difference in their habitual a.s.sociations, have fixed their attention in preference on some other aspect of the things. The history of philosophy abounds in examples of such oversights, committed for want of perceiving the hidden link that connected together the seemingly disparate meanings of some ambiguous word.[29]
Whenever the inquiry into the definition of the name of any real object consists of anything else than a mere comparison of authorities, we tacitly a.s.sume that a meaning must be found for the name, compatible with its continuing to denote, if possible all, but at any rate the greater or the more important part, of the things of which it is commonly predicated. The inquiry, therefore, into the definition, is an inquiry into the resemblances and differences among those things: whether there be any resemblance running through them all; if not, through what portion of them such a general resemblance can be traced: and finally, what are the common attributes, the possession of which gives to them all, or to that portion of them, the character of resemblance which has led to their being cla.s.sed together. When these common attributes have been ascertained and specified, the name which belongs in common to the resembling objects acquires a distinct instead of a vague connotation; and by possessing this distinct connotation, becomes susceptible of definition.
In giving a distinct connotation to the general name, the philosopher will endeavour to fix upon such attributes as, while they are common to all the things usually denoted by the name, are also of greatest importance in themselves; either directly, or from the number, the conspicuousness, or the interesting character, of the consequences to which they lead. He will select, as far as possible, such _differenti_ as lead to the greatest number of interesting _propria_. For these, rather than the more obscure and recondite qualities on which they often depend, give that general character and aspect to a set of objects, which determine the groups into which they naturally fall. But to penetrate to the more hidden agreement on which these obvious and superficial agreements depend, is often one of the most difficult of scientific problems. As it is among the most difficult, so it seldom fails to be among the most important. And since upon the result of this inquiry respecting the causes of the properties of a cla.s.s of things, there incidentally depends the question what shall be the meaning of a word; some of the most profound and most valuable investigations which philosophy presents to us, have been introduced by, and have offered themselves under the guise of, inquiries into the definition of a name.
FOOTNOTES:
[1] _Computation or Logic_, chap. ii.
[2] In the original "had, _or had not_." These last words, as involving a subtlety foreign to our present purpose, I have forborne to quote.
[3] Vide infra, note at the end of 3, book ii. ch. ii.
[4] _Notare_, to mark; _con_notare, to mark _along with_; to mark one thing _with_ or _in addition to_ another.
[5] Archbishop Whately, who, in the later editions of his _Elements of Logic_, aided in reviving the important distinction treated of in the text, proposes the term "Attributive" as a subst.i.tute for "Connotative"
(p. 22, 9th ed.) The expression is, in itself, appropriate; but as it has not the advantage of being connected with any verb, of so markedly distinctive a character as "to connote," it is not, I think, fitted to supply the place of the word Connotative in scientific use.
[6] A writer who ent.i.tles his book _Philosophy; or, the Science of Truth_, charges me in his very first page (referring at the foot of it to this pa.s.sage) with a.s.serting that _general_ names have properly no signification. And he repeats this statement many times in the course of his volume, with comments, not at all flattering, thereon. It is well to be now and then reminded to how great a length perverse misquotation (for, strange as it appears, I do not believe that the writer is dishonest) can sometimes go. It is a warning to readers, when they see an author accused, with volume and page referred to, and the apparent guarantee of inverted commas, of maintaining something more than commonly absurd, not to give implicit credence to the a.s.sertion without verifying the reference.
[7] Before quitting the subject of connotative names, it is proper to observe, that the first writer who, in our times, has adopted from the schoolmen the word _to connote_, Mr. James Mill, in his _a.n.a.lysis of the Phenomena of the Human Mind_, employs it in a signification different from that in which it is here used. He uses the word in a sense coextensive with its etymology, applying it to every case in which a name, while pointing directly to one thing, (which is consequently termed its signification,) includes also a tacit reference to some other thing. In the case considered in the text, that of concrete general names, his language and mine are the converse of one another.
Considering (very justly) the signification of the name to lie in the attribute, he speaks of the word as _noting_ the attribute, and _connoting_ the things possessing the attribute. And he describes abstract names as being properly concrete names with their connotation dropped: whereas, in my view, it is the _de_notation which would be said to be dropped, what was previously connoted becoming the whole signification.
In adopting a phraseology at variance with that which so high an authority, and one which I am less likely than any other person to undervalue, has deliberately sanctioned, I have been influenced by the urgent necessity for a term exclusively appropriated to express the manner in which a concrete general name serves to mark the attributes which are involved in its signification. This necessity can scarcely be felt in its full force by any one who has not found by experience how vain is the attempt to communicate clear ideas on the philosophy of language without such a word. It is hardly an exaggeration to say, that some of the most prevalent of the errors with which logic has been infected, and a large part of the cloudiness and confusion of ideas which have enveloped it, would, in all probability, have been avoided, if a term had been in common use to express exactly what I have signified by the term to connote. And the schoolmen, to whom we are indebted for the greater part of our logical language, gave us this also, and in this very sense. For though some of their general expressions countenance the use of the word in the more extensive and vague acceptation in which it is taken by Mr. Mill, yet when they had to define it specifically as a technical term, and to fix its meaning as such, with that admirable precision which always characterizes their definitions, they clearly explained that nothing was said to be connoted except _forms_, which word may generally, in their writings, be understood as synonymous with _attributes_.
Now, if the word _to connote_, so well suited to the purpose to which they applied it, be diverted from that purpose by being taken to fulfil another, for which it does not seem to me to be at all required; I am unable to find any expression to replace it, but such as are commonly employed in a sense so much more general, that it would be useless attempting to a.s.sociate them peculiarly with this precise idea. Such are the words, to involve, to imply, &c. By employing these, I should fail of attaining the object for which alone the name is needed, namely, to distinguish this particular kind of involving and implying from all other kinds, and to a.s.sure to it the degree of habitual attention which its importance demands.
[8] Or rather, all objects except itself and the percipient mind; for, as we shall see hereafter, to ascribe any attribute to an object, necessarily implies a mind to perceive it.
The simple and clear explanation given in the text, of relation and relative names, a subject so long the opprobrium of metaphysics, was given (as far as I know) for the first time, by Mr. James Mill, in his a.n.a.lysis of the Phenomena of the Human Mind.
[9] _Philosophy of the Inductive Sciences_, vol. i. p. 40.
[10] _Discussions on Philosophy_, &c. Appendix I. pp. 643-4.
[11] It is to be regretted that Sir William Hamilton, though he often strenuously insists on this doctrine, and though, in the pa.s.sage quoted, he states it with a comprehensiveness and force which leave nothing to be desired, did not consistently adhere to his own doctrine, but maintained along with it opinions with which it is utterly irreconcileable. See the third and other chapters of _An Examination of Sir William Hamilton's Philosophy_.