A Catechism of the Steam Engine - novelonlinefull.com
You’re read light novel A Catechism of the Steam Engine Part 31 online at NovelOnlineFull.com. Please use the follow button to get notification about the latest chapter next time when you visit NovelOnlineFull.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
SCREW AND PADDLES COMBINED.
613. _Q._--Would not a screw combined with paddles act in a similarly advantageous way as a screw or paddles when aided by the wind?
_A._--If in any given paddle vessel a supplementary screw be added to increase her power and speed, the screw will act in a more beneficial manner than if it had the whole vessel to propel itself, and for a like reason the paddles will act in a more beneficial manner. There will be less slip both upon the paddles and upon the screw than if either had been employed alone; but the same object would be attained by giving the vessel larger paddles or a larger screw.
614. _Q._--Have any vessels been constructed with combined screw and paddles?
_A._--Not any that I know of, except the great vessel built under the direction of Mr. Brunel. The Bee many years since was fitted with both screw and paddles, but this was for the purpose of ascertaining the relative efficiency of the two modes of propulsion, and not for the purpose of using both together.
615. _Q._--What would be the best means of accelerating the speed of a paddle vessel by the introduction of a supplementary screw?
_A._--If the vessel requires new boilers, the best course of procedure would be to work a single engine giving motion to the screw with high pressure steam, and to let the waste steam from the high pressure engine work the paddle engines. In this way the power might be doubled without any increased expenditure of fuel per hour, and there would be a diminished expenditure per voyage in the proportion of the increased speed.
616. _Q._--What would the increased speed be by doubling the power?
_A._--The increase would be in the proportion of the cube root of 1 to the cube root of 2, or it would be 1.25 times greater. If, therefore, the existing speed were 10 miles, it would be increased to 12-1/2 miles by doubling the power, and the vessel would ply with about a fourth less coals by increasing the power in the manner suggested.
617. _Q._--Is not high pressure steam dangerous in steam vessels?
_A._--Not necessarily so, and it has now been introduced into a good number of steam vessels with satisfactory results. In the case of locomotive engines, where it is used so widely, very few accidents have occurred; and in steam vessels the only additional source of danger is the salting of the boiler. This may be prevented either by the use of fresh water in the boiler, or by practising a larger amount of blowing off, to insure which it should be impossible to diminish the amount of water sent into the boiler by the feed pump, and the excess should be discharged overboard through a valve near the water level of the boiler, which valve is governed by a float that will rise or fall with the fluctuating level of the water. If the float be a copper ball, a little water should be introduced into it before it is soldered or brazed up, which will insure an equality of pressure within and without the ball, and a leakage of water into it will then be less likely to take place. A stone float, however, is cheaper, and if properly balanced will be equally effective. All steam vessels should have a large excess of boiling feed water constantly flowing into the boiler, and a large quant.i.ty of water constantly blowing off through the surface valves, which being governed by floats will open and let the superfluous water escape whenever the water level rises too high. In this way the boiler will be kept from salting, and priming will be much less likely to occur. The great problem of steam navigation is the economy of fuel, since the quant.i.ty of fuel consumed by a vessel will very much determine whether she is profitable or otherwise. Notwithstanding the momentous nature of this condition, however, the consumption of fuel in steam vessels is a point to which very little attention has been paid, and no efficient means have yet been adopted in steam vessels to insure that measure of economy which is known to be attainable, and which has been attained already in other departments of engineering in which the benefits of such economy are of less weighty import. It needs nothing more than the establishment of an efficient system of registration in steam vessels, to insure a large and rapid economy in the consumption of fuel, as this quality would then become the test of an engineer's proficiency, and would determine the measure of his fame. In the case of the Cornish engines, a saving of more than half the fuel was speedily effected by the introduction of the simple expedient of registration. In agricultural engines a like economy has speedily followed from a like arrangement; yet in both of these cases the benefits of a large saving are less eminent than they would be in the case of steam navigation; and it is to be hoped that this expedient of improvement will now be speedily adopted.
CHAPTER X.
EXAMPLES OF ENGINES.
OSCILLATING PADDLE ENGINES.
618. _Q._--Will you describe the structure of an oscillating engine as made by Messrs. Penn?
_A._--To do this it will be expedient to take an engine of a given power, and then the sizes may be given as well as an account of the configuration of the parts: we may take for an example a pair of engines of 21-1/2 inches diameter of cylinder, and 22 inches stroke, rated by Messrs. Penn at 12 horses power each. The cylinders of this oscillating engine are placed beneath the cranks, and, as in all Messrs. Penn's smaller engines, the piston rod is connected to the crank pin by means of a bra.s.s cap, provided with a socket, by means of which it is cuttered to the piston rod. There is but one air pump, which is situated within the condenser between the cylinders, and it is wrought by means of a crank in the intermediate shaft--this crank being cut out of a solid piece of metal as in the formation of the cranked axles of locomotive engines. The steam enters the cylinder through the outer trunnions, or the trunnions adjacent to the ship's sides, and enters the condenser through the two midship trunnions--a short three ported valve being placed on the front of the cylinder to regulate the flow of steam to and from the cylinder in the proper manner.
The weight of this valve on one side of the cylinder is balanced by a weight hung upon the other side of the cylinder; but in the most recent engines this weight is discarded, and two valves are used, which balance one another. The framing consists of an upper and lower frame of cast iron, bound together by eight malleable iron columns: upon the lower frame the pillow blocks rest which carry the cylinder trunnions, and the condenser and the bottom frame are cast in the same piece. The upper frame supports the paddle shaft pillow blocks; and pieces are bolted on in continuation of the upper frame to carry the paddle wheels, which are overhung from the journal.
619. _Q._--What are the dimensions and arrangement of the framing?
_A._--The web, or base plate of the lower frame is 3/4 of an Inch thick, and a cooming is earned all round the cylinder, leaving an opening of sufficient size to permit the necessary oscillation. The cross section of the upper frame is that of a hollow beam 6 inches deep, and about 3-1/2 inches wide, with holes at the sides to take out the core; and the thickness of the metal is 13/16ths of an inch. Both the upper and the lower frame is cast in a single piece, with the exception of the continuations of the upper frame, which support the paddle wheels. An oval ring 3 inches wide is formed in the upper frame, of sufficient size to permit the working of the air pump crank; and from this ring feathers run to the ends of the cross portions of the frame which supports the intermediate shaft journals.
The columns are 1-1/2 inches in diameter; they are provided with collars at the lower ends, which rest upon bosses in the lower frame, and with collars at the upper ends for supporting the upper frame; but the upper collars of two of the corner columns are screwed on, so as to enable the columns to be drawn up when it is required to get the cylinders out. The cross section of the bottom frame is also of the form of a hollow beam, 7 inches deep, except in the region of the condenser, where it is, of course, of a different form. The depth of the boss for the reception of the columns is a little more than 7 inches deep on the lower frame, and a little more than 6 inches deep on the upper frame; and the holes through them are so cored out, that the columns only bear at the upper and lower edges of the hole, instead of all through it--a formation by which the fitting of the columns is facilitated.
620. _Q._--What are the dimensions of the condenser?
_A._--The condenser, which is cast upon the lower frame, consists of an oval vessel 22-1/2 inches wide, by 2 feet 4-1/4 inches long, and 1 foot 10-1/2 inches deep; it stands 9 inches above the upper face of the bottom frame, the rest projecting beneath it; and it is enlarged at the sides by being carried beneath the trunnions.
621. _Q._--What are the dimensions of the air pump?
_A._--The air pump, which is set in the centre of the condenser, is 15-1/4 inches in diameter, and has a stroke of 11 inches. The foot valve is situated in the bottom of the air pump, and its seat consists of a disc of bra.s.s, in which there is a rectangular flap valve, opening upwards, but rounded on one side to the circle of the pump, and so balanced as to enable the valve to open with facility. The balance weight, which is formed of bra.s.s cast in the same piece as the valve itself, operates as a stop, by coming into contact with the disc which const.i.tutes the bottom of the pump; the disc being recessed opposite to the stop to enable the valve to open sufficiently. This disc is bolted to the barrel of the pump by means of an internal f.l.a.n.g.e, and before it can be removed the pump must be lifted out of its place. The air pump barrel is of bra.s.s to which is bolted a cast iron mouth piece, with a port for carrying the water to the hot well; within the hot well the delivery valve, which consists of a common flap valve, is situated. The mouth piece and the air pump barrel are made tight to the condenser, and to one another, by means of metallic joints carefully sc.r.a.ped to a true surface, so that a little white or red lead interposed makes an air tight joint. The air pump bucket is of bra.s.s, and the valve of the bucket is of the common pot lid or spindle kind. The injection water enters through a single c.o.c.k in front of the condenser--the jet striking against the barrel of the air pump. The air pump rod is maintained in its vertical position by means of guides, the lower ends of which are bolted to the mouth of the pump, and the upper to the oval in the top frame, within which the air pump crank works; and the motion is communicated from this crank to the pump rod by means of a short connected rod. The lower frame is not set immediately below the top frame, but 2-1/2 inches behind it, and the air pump and condenser are 2-1/2 inches nearer one edge of the lower frame than the other.
622. _Q._--What are the dimensions of the cylinder?
_A._--The thickness of the metal of the cylinder is 9/16ths of an inch; the depth of the belt of the cylinder is 9-1/2 inches, and its greatest projection from the cylinder is 2-1/2 inches. The distance from the lower edge of the belt to the bottom of the cylinder is 11-1/2 inches, and from the upper edge of the belt to the top f.l.a.n.g.e of the cylinder is 9 inches.
The trunnions are 7-1/4 inches diameter in the bearings, and 3-1/2 inches in width; and the f.l.a.n.g.es to which the glands are attached for s.c.r.e.w.i.n.g in the trunnion packings are 1-1/2 inch thick, and have 7/8ths of an inch of projection. The width of the packing s.p.a.ce round the trunnions is 5/8ths of an inch, and the diameter of the pipe pa.s.sing through the trunnion 4-5/8ths, which leaves 11/16ths for the thickness of the metal of the bearing. Above and below each trunnion a feather runs from the edge of the belt or bracket between 3 and 4 inches along the cylinder, for the sake of additional support; and in large engines the feather is continued through the interior of the belt, and cruciform feathers are added for the sake of greater stiffness. The projection of the outer face of the trunnion f.l.a.n.g.e from the side of the cylinder is 6-1/2 inches; the thickness of the f.l.a.n.g.e round the mouth of the cylinder is 3/4 of an inch, and its projection 1-3/8 inch; the height of the cylinder stuffing box above the cylinder cover is 4-1/8 inches, and its external diameter 4-3/8 inches--the diameter of the piston rod being 2-1/8 inches. The thickness of the stuffing box f.l.a.n.g.e is 1-1/8 inch.
623. _Q._--Will you describe the nature of the communication between the cylinder and condenser?
_A._--The pipe leading to the condenser from the cylinder is made somewhat bell mouthed where it joins the condenser, and the gland for compressing the packing is made of a larger internal diameter in every part except at the point at which the pipe emerges from it, where it accurately fits the pipe so as to enable the gland to squeeze the packing. By this construction the gland may be drawn back without being jammed upon the enlarged part of the pipe; and the enlargement of the pipe toward the condenser prevents the air pump barrel from offering any impediment to the free egress of the steam. The gland is made altogether in four pieces: the ring which presses the packing is made distinct from the f.l.a.n.g.e to which the bolts are attached which force the gland against the packing, and both ring and f.l.a.n.g.e are made in two pieces, to enable them to be got over the pipe. The ring is half checked in the direction of its depth, and is introduced without any other support to keep the halves together, than what is afforded by the interior of the stuffing box; and the f.l.a.n.g.e is half checked in the direction of its thickness, so that the bolts which press down the ring by pa.s.sing through this half-checked part, also keep the segments of the f.l.a.n.g.e together. The bottom of the trunnion packing s.p.a.ce is contracted to the diameter of the eduction pipe, so as to prevent the packing from being squeezed into the jacket; but the eduction pipe does not fit quite tight into this contracted part, but, while in close contact on the lower side, has about 1/32nd of an inch of s.p.a.ce between the top of the pipe and the cylinder, so as to permit the trunnions to wear to that extent without throwing a strain upon the pipe. The eduction pipe is attached to the condenser by a f.l.a.n.g.e joint, and the bolt holes are all made somewhat oblong in the perpendicular direction, so as to permit the pipe to be slightly lowered, should such an operation be rendered necessary by the wear of the trunnion bearings; but in practice the wear of the trunnion bearings is found to be so small as to be almost inappreciable.
624. _Q._--Will you describe the valve and valve casing?
_A._--The length of the valve casing is 16-1/2 inches, and its projection from the cylinder is 3-1/2 inches at the top, 4-1/4 inches at the centre, and 2-1/2 inches at the bottom, so that the back of the valve casing is not made flat, but is formed in a curve. The width of the valve casing is 9 inches, but there is a portion of the depth of the belt 1-1/2 inch wider, to permit the steam to enter from the belt into the casing. The valve casing is attached to the cylinder by a metallic joint; the width of the f.l.a.n.g.e of this joint is 1-1/4 inch, the thickness of the f.l.a.n.g.e on the casing 1/2 inch, and the thickness of the f.l.a.n.g.e on the cylinder 5/8ths of an inch. The projection from the cylinder of the pa.s.sage for carrying the steam upwards, and downwards, from the valve to the top and bottom of the cylinder, is 2-1/4 inches, and its width externally 8-5/8 inches. The valve is of the ordinary three ported description, and both cylinder and valve faces are of cast iron.
625. _Q._--What description of piston is used?
_A._--The piston is packed with hemp, but the junk ring is made of malleable iron, as cast iron junk rings have been found liable to break: there are four plugs screwed into the cylinder cover, which, when removed, permit a box key to be introduced, to screw down the piston packing. The screws in the junk ring are each provided with a small ratchet, cut in a washer fixed upon the head, to prevent the screw from turning back; and the number of clicks given by these ratchets, in tightening up the bolts, enables the engineer to know when they have all been tightened equally. In more recent engines, and especially in those of large size, Messrs. Penn employ for the piston packing a single metallic ring with tongue piece and indented plate behind the joint; and this ring is packed behind with hemp squeezed by the junk ring as in ordinary hemp-packed pistons.
626. _Q._--Will you describe the construction of the cap for connecting the piston rod with the crank pin?
_A._--The cap for attaching the piston rod to the crank pin, is formed altogether of bra.s.s, which bra.s.s serves to form the bearing of the crank pin. The external diameter of the socket by which this cap is attached to the piston rod is 3-5/16 inches. The diameter of the crank pin is 3 inches, and the length of the crank pin bearing 3-7/8 inches. The thickness of the bra.s.s around the crank pin bearing is 1 inch, and the upper portion of the bra.s.s is secured to the lower portion, by means of lugs, which are of such a depth that the perpendicular section through the centre of the bearing has a square outline measuring 7 inches in the horizontal direction, 3-7/8 inches from the centre of the pin to the level of the top of the lugs, and 2-1/2 inches from the centre of the pin to the level of the bottom of the lugs. The width of the lugs is 2 inches, and the bolts pa.s.sing through them are 1-1/4 inch in diameter. The bolts are tapped into the lower portion of the cap, and are fitted very accurately by sc.r.a.ping where they pa.s.s through the upper portion, so as to act as steady pins in preventing the cover of the crank pin bearing from being worked sideways by the alternate thrust on each side. The distance between the centres of the bolts is 5 inches, and in the centre of the cover, where the lugs, continued in the form of a web, meet one another, an oil cup 1-5/8 inch in diameter, 1-1/8 inch high, and provided with an internal pipe, is cast upon the cover, to contain oil for the lubrication of the crank pin bearing. The depth of the cutter for attaching the cap to the piston rod is 1-1/4 inch and its thickness is 3/8ths of an inch.
627. _Q._--Will you describe the means by which the air pump rod is connected with the crank which works the air pump?
[Ill.u.s.tration: Fig. 50. AIR PUMP CONNECTING ROD AND CROSS HEAD. Messrs.
Penn.]
_A._--A similar cap to that of the piston rod attaches the air pump crank to the connecting rod by which the air pump rod is moved, but in this instance the diameter of the bearing is 5 inches, and the length of the bearing is about 3 inches. The air pump connecting rod and cross head are shown in perspective in fig. 50. The thickness of the bra.s.s encircling the bearing of the shaft is three fourths of an inch upon the edge, and 1-1/8 inch in the centre, the back being slightly rounded; the width of the lugs is 1-5/8 inch, and the depth of the lugs is 2 inches upon the upper bra.s.s, and 2 inches upon the lower bra.s.s, making a total depth of 4 inches. The diameter of the bolts pa.s.sing through the lugs is 1 inch, and the bolts are tapped into the lower bra.s.s, and accurately fitted into the upper one, so as to act as steady pins, as in the previous instance. The lower eye of the connecting rod is forked, so as to admit the eye of the air pump rod; and the pin which connects the two together is prolonged into a cross head, as shown in fig. 50. The ends of this cross head move in guides. The forked end of the connecting rod is fixed upon the cross head by means of a feather, so that the cross head partakes of the motion of the connecting rod, and a cap, similar to that attached to the piston rod, is attached to the air pump rod, for connecting it with the cross head. The diameter of the air pump rod is 1-1/2 inch, the external diameter of the socket encircling the rod is 2-1/8 inches, and the depth of the socket 4-1/2 inches from the centre of the cross head. The depth of the cutter for attaching the socket to the rod is 1 inch, and its thickness 5/16 inch. The breadth of the lugs is 1-3/8 inch, the depth 1-1/4 inch, making a total depth of 2-1/2 inches; and the diameter of the bolts seven eighths of an inch. The diameter of the cross head at the centre is 2 inches, the thickness of each jaw around the bearing 1 inch, and the breadth of each 9/16 inch.
628. _Q._--What are the dimensions of the crank shaft and cranks?
_A._--The diameter of the intermediate shaft journal is 4-3/16 inches, and of the paddle shaft journal 4-3/8 inches; the length of the journal in each case is 5 inches. The diameter of the large eye of the crank is 7 inches, and the diameter of the hole through it is 4-3/8 inches; the diameter of the small eye of the crank is 5-1/4 inches, the diameter of the hole through it being 3 inches. The depth of the large eye is 4-1/4 inches, and of the small eye 3-3/4 inches; the breadth of the web is 4 inches at the shaft end, and 3 inches at the pin end, and the thickness of the web is 2-5/8 inches. The width of the notch forming the crank in the intermediate shaft for working the air pump is 3-1/2 inches, and the width of each of the arms of this crank is 3-15/16 inches. Both the outer and inner corners of the crank are chamfered away, until the square part of the crank meets the round of the shaft. The method of securing the cranks pins into the crank eyes of the intermediate shaft consists in the application of a nut to the end of each pin, where it pa.s.ses through the eye, the projecting end of the pin being formed with a thread upon which the nut is screwed.
629. _Q._--Will you describe the eccentric and eccentric rod?
[Ill.u.s.tration: Fig. 51. ECCENTRIC AND ROD. Messrs. Penn.]
_A._--The eccentric and eccentric rod are shown in fig. 51. The eccentric is put on the crank shaft in two halves, joined in the diameter of largest eccentricity by means of a single bolt pa.s.sing through lugs on the central eye, and the back balance is made in a separate piece five eighths of an inch thick, and is attached by means of two bolts, which also help to bind the halves of the eccentric together. The eccentric strap is half an inch thick, and 1-1/4 inch broad, and the f.l.a.n.g.es of the eccentric, within which the strap works, are each three eighths of an inch thick. The eccentric rod is attached to the eccentric hoop by means of two bolts pa.s.sing through lugs upon the rod, and tapped into a square boss upon the hoop; and pieces of iron, of a greater or less thickness, are interposed between the surfaces in setting the valve, to make the eccentric rod of the right length. The eccentric rod is kept in gear by the push of a small horizontal rod, attached to a vertical blade spring, and it is thrown out of gear by means of the ordinary disengaging apparatus, which acts in opposition to the spring, as, in cases where the eccentric rod is not vertical, it acts in opposition to the gravity of the rod.
630. _Q._--Will you explain in detail the construction of the valve gearing, or such parts of it as are peculiar to the oscillating engine?
_A._--The eccentric rod is attached by a pin, 1 inch in diameter, to an open curved link or sector with a tail projecting upward and pa.s.sing through an eye to guide the link in a vertical motion. The link is formed of iron case-hardened, and is 2-3/4 inches deep at the middle, and 2-3/8 inches deep at the ends, and 1 inch broad. The opening in the link, which extends nearly its entire length, is 1-5/16 inch broad; and into this opening a bra.s.s block 2 inches long is truly fitted, there being a hole through the block 3/4 inch diameter, for the reception of the pin of the valve shaft lever. The valve shaft is 1-3/4 inch diameter at the end next the link or segment, and diminishes regularly to the other end, but its cross section a.s.sumes the form of an octagon in its pa.s.sage round the cylinder, measuring mid-way 1-1/4 inch deep, by about 3/4 inch thick, and the greatest depth of the finger for moving the valve is about 1 inch. The depth of the lever for moving the valve shaft is 2 inches at the broad, and 1-1/4 inch at the narrow end. The internal breadth of the mortice in which the valve finger moves is 5/16 inch, and its external depth is 1-3/4 inch, which leaves three eighths of an inch as the thickness of metal round the hole; and the breadth, measuring in the direction of the hole, is 1-1/2 inch. The valve rod is three fourths of an inch in diameter, and the mortice is connected to the valve rod by a socket 1 inch long, and 1-1/8 inch diameter, through which a small cutter pa.s.ses. A continuation of the rod, eleven sixteenths of an inch diameter, pa.s.ses upward from the mortice, and works through an eye, which serves the purpose of a guide. In addition to the guide afforded to the segment by the ascending tail, it is guided at the ends upon the columns of the framing by means of thin semicircular bra.s.ses, 4 inches deep, pa.s.sing round the columns, and attached to the segment by two 3/8 inch bolts at each end, pa.s.sing through projecting feathers upon the bra.s.ses and segment, three eighths of an inch in thickness. The curvature of the segment is such as to correspond with the arc swept from the centre of the trunnion to the centre of the valve lever pin when the valve is at half stroke as a radius; and the operation of the segment is to prevent the valve from being affected by the oscillation of the cylinder, but the same action, would be obtained by the employment of a smaller eccentric with more lead. In some engines the segment is not formed in a single piece, but of two curved blades, with blocks interposed at the ends, which may be filed down a little, to enable the sides of the slot to be brought nearer, as the metal wears away.
631. _Q._--What kind of plummer blocks are used for the paddle shaft bearings?
_A._--The paddle shaft plummer blocks are altogether of bra.s.s, and are formed in much the same manner as the cap of the piston rod, only that the sole is flat, as in ordinary plummer blocks, and is fitted between projecting lugs of the framing, to prevent side motion. In the bearings fitted on this plan, however, the upper bra.s.s will generally acquire a good deal of play after some amount of wear. The bolts are worked slack in the holes, though accurately fitted at first; and it appears expedient, therefore, either to make the bolts very large, and the sockets through which they pa.s.s very deep, or to let one bra.s.s fit into the other.